A CONTRIBUTION TO THE HISTOTAXONOMY OF CORYLUS (BETULACEAE)

By Bakx Kasapligll,
Mills College, Oakland, California

INTRODUCTION

The genus Corylus has about ten species of trees and shrubs distributed in the temperate regions of the northern hemisphere. The present study concerns the following three species native to Europe : Corytus avellana $\mathrm{L}_{1}=$ the Common filbert, C. maxima Mill. $=$ the Giant filbert and C. colurna L. = the Turkish filbert. The first two species have Iong been under cultivation for their well known edible nuts called filberts or hazelnuts. The last one is occasionally cultivated as an ornamental tree in the parks and along streets. Consequently, there is a considerable literature on the horticulture, biology and the gross-morphological features of the cultivated species and varieties of filberts (Baitey 1927, Evreinoff 1958, Goeschke 1887, Gross 1902, Hartwig 1892, Howes 1948 , Krossmann 1959, Mallinjaud 1962, Nicholson 1884, Osborin 1930, Reed 1926, Filstone 1938, Schneider 1906, Schlez. 1892, Turaill 1956, Wein 1932, Zimmermann (922). Relatively speaking, the anatomical and ontogenetic information about the genus Coryhus is rather scarce being found mainly in the works of Abbe (1935 and 1938), Benson (1894), Hagefup (1942), Hall (1952), Kırchner, Loew and Schröter (1913), Metcalfe and Ghalk (1950), Solereder (1908).

The present study initiated during the author's survey of literature while searching for anatomical evidences concerning the phylogenetic relationship among the species of Gorytus as well as among the genera allied with Coryltus. The terms anatomy and histology are taken as synonyms, but the term histotaxonomy here is used to replace the classical term of "systematic anatomy".

This project was earried out in the following institutions during the author's sabbatical leave granted by Mills College, Oakland, California: Laboratoire de Phanérogamie, Musẻum National d'Histoire Naturelle, Poris; Gonservatoire et Jardin Botaniques, Musèes de Genève; Botanischer Garten und Institat für Systematische Botanik der Universitat Zürich; Royal Botanic Gardens, Kew. I wish to extend my sincere appreciation to the directors of these institutions as well as to their staff members for the generous assistance and cooperation olfered during the course of my work. I wish to thank also Professor 11. L. Nason,
of the University of California, Berkeley for loaning me the herbarium specimens I needed in this study.

MATERTALS AND TEGHNIQUE

The leaf material of Corylus avellana which was processed for the study of vasculation of the adult leaf was obtained from anherbarium specimen (U.C. Herb., Berkeley, No. 504321) which was collected by K. Kral'se, ($N^{0} 3843$) from the Black Sea coast of Turkey on July 4 , 1931. The exact locality as given on the label is : Gukurbuk near Samsun, altitude ca, 300 m , above sea level. But the specimen was erroneously named as Corghus colurna L. A careful examination of the specimen revealed the fact that the specimen was a typical C. avellana L. The juvenile leaf of the G. avellana seedling which was obtained from a dried specimen at the Conservatoire Botanique de Geneve, was collected by M. Mreneli from Froubenex, on June 23, 1858.

The adult leaf material of C. maxima was received from a living specimen in the arboretum of Ecole Dubreuil, Paris. The juvenile leaves of this species were obtained from a dried seedling specimen at the Conservatoire Botanique de Genéve, collected by H. Romelx from Florissant, Genéve, June 17, 1886. The herbarium sheet of this specimen was erroneously labelled as C. avellana but the well preserved nut-shell attached to the seedling was from a typical fruit of C. maxima leaving no doubt about the correct identity of the specimen.

The adult leaf material of Colurna was obtained from an herbarium specimen (U.C. Herb., Berkeley, 387846) collected by the Rev. Jos. Giraldi from China interior, Province Schen-si septentr., Kin-qua-San, July 10, 1897. The juvenile leaves of this species were collected (Kasapligil No 3387) from vigorously growing sucker shoots of a tree at the Jardin des Plantes, Paris.

For the purpose of studying the foliar vasculation, the leaf portions were first discoloured by boiling them in 95% alcohol. Then, the material was cleared in a 5% solution of potassium hydroxide within two days at room temperature. Following dehydration through a series of alcohol the material was stained with Safranin 0, cleared through a series of xylene and mounted permanently in Canada balsam (ci. Foster 1949, Appendix and Kasabligil 1951 a).

Fresh matcrials for the histological study of the lamina and petiole and the twigs for the study of stem anatomy were collceted from living specimens growing in Jardin des Plantes and Arénes de Lutece, Paris. Free hand sections of these materials were fixed and mounted in gelatine glycerine. The maceration of the stem wood for the study of the xylem elements was carried out in an equal amount of mixture of 10% nitric acid and 10% chromic acid. The maceration of wood portions took place within 3-4 days at room temperature. The macerated material was thoroughly washed with water using a centrifuge, then dehydrated
through the alcohol series. Part of the macerated wood was stained with Safranin 0, and part of it with Lodine green. Safranin staining proved to be more desirable for the microscopic examination. The stained marerated wood elements were processed further through the xylene series by means of a centrifuge and mounted in Canada balsam permancutly.

The staminate cat kins used in the palynological study were obtained from the following herbarium specimens of the Laboratoire de Phanerogamie in Paris : Corylus avellana, Flora Silesiaca, Breslau, Gopperthain, alt. $120 \mathrm{~m}_{\cdot 1}$ collected by C. Baeniz in 1899 ; C. maxima, Savi pl. Italia bor., Pisa, collected by Gesati (No 750); C. colurna, Turkey. Vilayet Kastamoni, Tosya Gavurdagh, collected by Eintenis (No 4809) in 1892. The pollen material was bleached with a 3% solution of KOH and then boiled in glacial acetic acid. Dehydration and staining of the pollen grains were carried out by means of an electric centrifuge, the material then being mounted in glycerine jelly. Pollen material was stained either with a 1% alcoholic solution of Salranin or with a 1% alcoholic solution of Methylene blue. Stained material was suitable for the microscopic examination, but for the purpose of photomicrography the slides prepared from unstained pollen grains were more suitable than the ones made from stained pollens.

NOMENCLATURE AND HABIT

1. Gorylus avellana L., Sp. pI. : 998 (1753) ; A. de Candolle in De Candolle, Prodr. 16 (2) : 130 \{1864\}; Tchihatchefl, Asie Min. Bot. 2:48! (1866); Boiss., Fl. Or. 4 : 1176 (1879); Beck, Vegetationsverhàltn. d. illyrischen Länder (1901); Winkler in Engler, Pflanzenreich 4, 61 (Heft 19) : 46 (1904); Ascherson and Grobner, Syn. Mittelenr. Fl. 4 : 379 (1910); Hayek, Prodr. Fl. Penins. Balcan. 1 : 69 (1924).
(Synonyms : Corylus ardua Poiteau and Turpin. G. avellana var. sylvestris Aiton, C. avellana var. Iypica Schneider, C. grandis Dryand, C. serenyiana Pluskal, C. silvestris Salisbury).

The European filbert is a deciduous shrub, 1-7 m. high. Some rare specimens may exeed 10 m . in height, but always retaining the shrubby habit of many stems and a more or less rounded crown. The basal sprouts grow fast at young stage, but the rate of growth slows down gradually, stems attaining a height of $6-6,5 \mathrm{~m}$. and a diameter of $6-8 \mathrm{~cm}$. in twenty years. The bark of the young twigs is glandular pubescent, reddish brown, becoming smooth and greyish brown by age.

The common varieties of G. avellana are : var. aurea Kirchn. with ypllow leaves; var. conlorla Bean with curly and twisted twigs; var. fusco-rubra Dipp, with purple or reddish leaves; var. helerophylla Loud. (Syn. : C, avellana var. laciniala Döll.) with pinnately dissected leaves; var. grandis Ait. with large subglobose nuts. The readers are referred to Goeschke's monograph (1887) for the descriptions and classilication of cultivated forms and varieties.
2. Corylus maxima Miller, Gard. Dict. ed. 8, no 3 (1768); Spach in Aan. Sc. Nat. Bot. sér. 2, 16 : 106 (1841); Winkler in Engler Pflanzenreich 4, 61 (Heit 19) : 51 (1904); Hayek, Prodr. Fl. Pemins. Balcan. 1 : 69 (1924); Hegi, 111. F1. Mitt. Eur. 11 I/1: 191 (1957); Kriissmann, Handh. Laubgeh. 1 (5) : 351 (1959).
(Symonyms : C. avellana var, Lamberli (Lodd.) Loudon, C, avellana var. saliva C. F. Ludwig, C. avellana var. lubulosa Loudon, G. avellana var. tubulosa alba (Ait.) Loudon, G. intermedia Fingerhut, G. Lamberif Lodd., C. maxima var. alba (Lodd.) Schneider, G. tubulosa Willd.).

The Giant filbert is a deciduous shrub, $2-10 \mathrm{~m}$. high. 1 ts habit is quite similar to that of C. avellana, but growing more vigorously than the latter. Under favourable conditions, it may attain a height of up to 15 m . Young twigs are reddish brown and covered with glandular hairs. Older stems possess a smooth bark of dark grey-brown colouring.

Gorylas maxima var, atroparpurea Dochnahl (Syn. C. avellane purpurea Load., C. avellana atropurpurea, C. afroparparea, C. alrosanguinea, G. purpurea Hort., C. maxima (. purpurea (Loud.) Rehd.) is a very popular ornamental plant with a purple-red foliage and invulucre.
3. Corylus colurma L., Sp. Pl. : 949 (1753); Tchihatchelf, Asis Min. Bot. $2: 482$ (1866); Boiss. Fl. Or. $4: 1176$ (1879); Winkler in Engler. Pflanzenreich 4, 61 (Heit 19) :51 (1904); llayek, Prodr. Fl. Penins, Balcan. 1 : 69 (1924); Smolianinova in Bull. Appl, Bot. (Pl. Breed.) 21 (5) : 379. 449 (1929); Kasapligil, Jour. Calif. Hort, Sor. 24, 4 : 95-104 (1963).
(Synonyms : G. arboreseens Münchh., G. byzanlina Poiteau and Turpin, G. Jacquemoniii Decaisne).

L'ulike the two previous species, the Turkish filbert is a tall tree, usually with a single massive bole. Its height varies from 204040 m . depending on the variety. The stem diameter measures up to $1,25 \mathrm{~m}$. With increased age, the ovate or pyramidal crown shows a tendency t.o bend towards oat direction. Pruning during the young stage of the plant results in a shrubby habit (Kasapligil 1963 a). Young twigs are light yellowish gray and glandular pubescent or setose. Old stems possess a corky, deeply furrowed bark which splits into vertical plate-like segments.

The varieties of the 'lurkish filbert (C. colurna var. colurna, var. glandudijera A. DC., var. lacera (Wall.) A. DC., and var, chinensis (Franch.) Burkill) are readily distinguishable through their involucral characteristics (Kasapligil 1963 b).

Classification

The genus Corylus was classified under Corylaceae by Marbet., Elém. Phys. Vég. Bot. 2 : 906 (1815) (cf. Rehder 1949 for further refe-
rences and synonymy). This family was named as Belulaceae by Agardh, Aphor, : 208 (1825) and then also by Bartling, Ord. Nat. Pl, : 99 (1830). The family Belulaceae is divided into two tribes in Winklen's (1904) monograph : Tribe I : Coryleae including Carpinus, Corylus, Ostrya and Osiryopsis and Tribe 11 : Betaleat including Belula and Alnus. Rehder (1946) indicates that "the family called Belataceae should bear, according to the rules of priority, the name Corglacear". However, in the 1961 cdition of the International Code of Botanical Nomenclature, Belalaceae (s.F. Gray, Nat. Arr. Brit. Pl. 2: 243 (1821) "Betatoideae") is listed under Nomina Familiarum Conservanda (Appendix 1I, p. 189 of the Code) with the following note: "If this family is united with Corylaceae Mirbel, Elèm. Phys. Vèg. Bot. 2 : 906 (1815), the name Belulaceae must be used".

Eichler (1875) treats the genus Corylus under Corylaceae as a separate lamily from Belulaceae, but both belonging to Amenlaceae. Benthan and Hooker (1862-1883) include both families under Cupulijerae. Engler and Prantl (1894), Winkien (1904), Wettstein (1930) and HEgs (1957) classify the genus Corylus under Belulaceae, a fanily of Fagalcs, while the same family occupies an advanced position under Sapindales in Bessey's (1915) system. Hutchinson (1959) splits the family into Betulaceae comprising Alnus and Betala in which the staminate dowers possess a calyx, but the pistillate flowers are without perianth, and into Corylaceae including Carpinus, Corylus, Ostrya and Osiryopsis, in which the staminate flowers are without perianth, but pistillate flowers possess a calyx adnate to the ovary resulting an inferior ovary. Actually, these two families of Hurchinson correspond to the tribes of Beluataeae in the classifications of Engler and Prantl (1894) and Winkler (1904). Should Belulaceae and Corglaceae merge into a single family as in the Englerian system or should they be separated from each other? Are there histological evidences to justify the separation of Corytaceae from Belulaceac? The present study was initiated with the hope to shed some light on this problem. I shall return to these questions under the heading "discussion" at the end of this paper.

GEOGRADIIC DISTRIBUTION

Corglus avellana is distributed throughout Europe from Cintra on the west coast of Portugal, Ireland and Orkney 1slands to the southern part of the Ural mountains through Bessarabia, Crimea and Kazakistan. It is abundant throughout the Balkan countries including the coastal regions of eastern Thrace. The northern distribution range extends to 68° northern latitude along the west coast of Norway, to 64° northern latitude in Sweden and 60° northern latitude in Russia along the southern shores of Ladoga lake. 1n southern Europe it occurs in Spain, Sicily and Greece. It is also recorded from Candia on Crete (M. Gandoger, May 14, 1915, Herb. Barbey-Boissier, Geneva), but I am not sure about the indigenous nature of this specimen. Holmboe (1914) reported its
rare occurrence in the mountain forests of Cyprus, In Asia, it extends from Turkey through Caucasia to 1ran in the East and from the AntiTaurus mountains of Anatolia to Syria and Lebanon in the South. The European filbert is a common shrub in the understory of alder, beecł, and oak forests. It may form pure stands of its own or be associated with other deciduous shrubs forming thickets in mountain valleys, It is widely cultivated in Turkey, Italy, France, Spain and in other temperate regions of the world.

Corylus maxima is native to south eastem Europe, i.e. Thrace, Macedonia, Croatia and to north eastern Anatolia. This species is recorded from the following localities of Asia Minor: Giresun (Krause 1877), Trabzon (Handel-Mazzetti nos, 71 and 230), Gümüshane (Sintenis no, 7103). According to Krause (1930) it represents the characteristic plant of the bush forest of the Black Sea coast of Turkey up to an elevation of 1300 m . where it is also widely cultivated for its nuts. Often it is found naturalized within hedges and orchards in Berlin, Germany and in Steirmark, Austria.

Corglus colurna and its varieties are native to an area extending from south eastern Europe through northern Turkey, Caucasia, northern Iran and the Himalayas to China. Usually, it occurs as scattered trees in deciduous and mixed coniferous forests. The reader is referred to the author's article on this species (Kasapligil 1963 b) for the detail of recorded indigenous localities. However, I would like to list those European localities of cultivated Corglus colurna that are known to me, since this species, as compared with the other two, is quite rare in central and western Europe. In the following list the localities of the specimens will be followed by the characteristics of the individuals and references in parenthesies. All measurements and ages that will be cited, are approximate : Austria: Merkenstein-naturalized in forests \{Kirchner, 0 . v. et ai. 1919, Lebensgeschichte d. Blütenpflanzen Mitteleuropas 2 : 146-166). - France: Paris, Ple d'Auteuil, Jardin Fleuriste Municipal -a young tree with branches developing on one side only, 6.5 m . high, d.a.b.h. ${ }^{1}$ $7.5 \mathrm{~cm} ., 12$ years old (Kasapligul no. 3384 b, Aug, 19, 1962); ibid., Jardin des Plantes, near Laboratoire de Phanérogamie-a healthy tree, $12,5 \mathrm{~m}$. high, with a single bole of 3 m . 'from ground, d.a.b.h. $30 \mathrm{~cm} ., 25$ years old, with fertile fruits, seeds tasty (Kasapligil no. 3386, Aug. 20, 1962); ibid., Rue Buffon, in the courtyard of Chaire Culture-a young tree with ovate crown, 7 m , high, 16 years old, abundant fertile fruits (Kasapligll no. 3390, Aug. 28, 1962); ibid., Bois de Vincennes, École Dubreuil the arboretum has the adult trees of two varieties, i.e. var. chinensis and var. glamiulifera, hoth with fertile nuts (Kasspligil no. 3399 and 3401 respectively, Aug. 31, 1962). - Germany: Heidelberg stiftsmühle -crown elongate-ovate, two stems from ground, height 17 m , d.a.b.h. $58 \mathrm{~cm}, 60$ years old, sterile fruits (Dr. H. Heine, Paris, personal correspondence, Nov. 6, 1962); vicinity of Mannheim, Neustadt, Hauberan-

[^0]lagen-tree 20 m . high, d.a.b.h. $50-60 \mathrm{~cm}$. (5. Wisde 1936, Kulturgeschichte d. rheinpflanzlichen Baumwelt u. ihrer Naturdenkmale, Verlag Thiemc); Thüringen, Bad Köstritz, street plantation-trees with ovate crowns, boles 2.20 m . high, $30-40$ years old, fertile fruits (Mitt. d. deutsch. dendr. Ges. 1932); Weteritz, Gardelegen-tree 8 m . high (Mitt. d. deutsch. dendr. Ges. 1934); Lahn, in a garden at Wilhelm Platz-two trees, d.a.b.h. 47 and 56 cm . (Mitt. d, deutsch. dendr, Ges. 1936); Breslau, Scheitniger Park-hardy ornamentals (Mitt. d. deutsch. dendr. Ges. 44 : 531-535, 1932); Bad Reichenhall, Staufenhof-d.a.b.h. 40 cm ,, many fertile iruits (Mitt, d. deutsch. dendr. Ges. 1932); Weinheim near Mannheim, Gräll. v. Berckheimscher Versuchswald-T'rees 56 years old, fruits sterile (F. Fabricius 1931, Mitt. d. deutsch. dendr. Ges. 43 : 181-187). - Great Bnitals: Richmond, Surrey, Roy. Bot. Gard., Kew-adult specimens of several varieties (Kasapligil nos, 3420-22, Apr. 22, 1963); Isleworth, syon House-several tall trees, the tallest 23 m . high, with a clean bole up $\mathbf{t o} 9 \mathrm{~m}$., girth 206 cm . (A. Osbokn 1930, The tree coryluses, Gard. Chron. 2250; 106-107); Cambridge Bot. Gard., 16 m . high, girth at base 3 m . (Kasapligll 3427)-Hungary: Budapest, Ile Marguerite-trees 12-15 m. high (Herb. specimen collected in May 20, 1905, Conservatoire Bot., Geneva). - Switzerland: Geneva, Univ. de Genéve, Jardin des Bastions-tree 16 m . high with a single bole of $2,5 \mathrm{~m}$. from ground, d.a.b.h. 42 cm ., 100 years old, fruits sterile (Kasapligll 1963, Musées de Genève 4, 32 : 8-10); ibid., Jard. Bot., Ruc de Lausanne-tree raised from a sucker, five stems from ground, 9 m . high, 20 years old, fruits sterile (ibid.); ibid., Arboretum, Ecole d'Horticulture, Châtelaine-tree raised from seedling, height 6 m ., single bole, d.a.b.h. $11 \mathrm{~cm} ., 15$ years old, fruits sterile (ibid.); St. Gallen, near the junction of Notker and Pelikan Str.- three young trees, each with a single bole, 9 m. high, d.a.b.h. $18 \mathrm{~cm} ., 23$ years old, sterilc fruits, possibly a clone (Kasapligil no. 3415, Oct. 10, 1962); ibid., Zwinglistr., next to Kino Rex-a solitary tree with a single bole, 17 m . high, 40 years old, sterile fruits, some branches completely dead (Kasapligil no. 3416, Oct. 10, 1962); Zürich, Bot. Gart. Eniv. Zürich, facing Löwenstr.-single tree with a broad conical crown, 10 m . high, d. a. b. h. 32 cm ., abundant staminate catkins often abnorinally forked at tips, no fruits at all (Kasspucin, no, 3376, July 25, 1962).

HISTOLOGY OF THE STEM

The transverse sections of stems one to three years old have been studied comparatively to bring out the anatomical similarities and differences among three species of Corylas. Young developing shoots at the stage of primary structure as well as one year old stems completing the sceondary growth of the first year, are covered by soft unicellular simple trichonics, and long, stif emergences. Various forms of these trichomes will be described in detail under the heading of "foliage leaves".

On the shoot of Corylus avellana and C. maxima, the trichomes partly persist through the second year's growth, while the trichomes on the young sloots of C. colurna are completely shed towards the completion of the first year's secondary growth. All three species possess an uniseriate epidermis. In C. avellana and C. marima, the outer tangential walls of the epidermal cells are moderately cutinized, while in C. colurna a heavy cutinization is apparent. The epidermis is partly sloughed away from three years old stems of C. avellana and C. maxima, but some trichomes remain attached to its remnants. At the comparable stage, the epidermal tissue of C. colurna is completely sloughed away from the stems.

Phellogen develops from the outermost layer of the cortex. Phellem consists of 5-7 layers of small and moderately compact cells in one year old stems of C. avellana and C. maxima. The phellen tissue in a one year old stem of G. colurna consists of 7-10 layers of cells, the inner layers being much compressed, the outer ones showing very large but more or less regular cells. The lenticels are well developed at the end of the first year.

The cortex differentiates into outer collenchymatous and inner parenchymatous regions. Collenchyma consists of 5-7 layers of compact cells without inter-cellular spaces. The collenchyma cells contain chloroplasts, starch grains and tanniferous material. Occasionally, the rells of the jnnermost layer of collenchyma contain prismatic crystals of calcium oxalate. The collenchymatous ring in C. avellana and C. maxima becomes interrupted as a result of secondary growth, the gaps between the collenchyma groups being occupied by thin-walled parenchyma cells. In three years old stems of C. colurna, however, collenchyma remains as a continuous cylinder.

In one year old shoots of C. avellana and C, maxina 4-5 cell layers of cortical parenchyma underlie the collenchyma tissue, while in C. colarna 5 -10 cell layers arc ohserved. The cortical parenchyma cells are primarily chlorophyllous, but cells containing either tanniferous mutprial or druses of calcium oxalate, are not uneommon.

The phloic sclerenchyma adjacent to the inner boundary of the cortex, consists of a continuous cylinder $2-7$ layers of fibers in the shoots that are one year old. This cylinder of fibers becomes broken as the growth in thickness advances. The brachysclereids develop trom the cortex as well as from the phloem parenchyma cells in the interrupted resions and complete the cylinder of sclerenchyma. The lumina of the fibers are highly reduced, but those of the brachyselereids are quite large and often contain solitary prismatic erystals of calcium oxalate. In C. avellana and \mathbb{C}. maxima, the phloic sclerenchyma is more or less equally thick throughout the cylinder, but in C. colurna the patches of hrachysclereids are nearly twice as thick as the rest of the fiber cylinder.

The sieve tube elements of the protophloem become obliterated. while the metaphloem cells are somewhat compressed, but not crushed. Some of the phloem parenchyma cells contain druses of calcium oxa-
late. Tannic substances occur in many of them. The secondary phloem is quite similar to that in Tilia stems (cf. Esav 1953, p. 395); it becomes banded by the formation of secondary phloem fibers. The cells containing mucilaginous and tannic substances are abundant in dilating phloem rays. The brachysclereids occur commonly in clusters or individually within the secondary phloem of C. colurna while they are rare in C. avellana and C. maxima.

In all three species, the wood is diffuse porous. The growth layers are sharply demarcated at their boundaries. Several growth layers were observed within a single annual ring in the stem wood of C. maxima. Due to the presence of aggregate rays, the growth layers are distinctly wavy in C. avellana and C. maxima while in C. colurna they are straight or obscurely wavy. The bulk of the secondary xylem consists of relatively thin-walled imperforate tracheary elements in G. avellana and C. maxima and of vessel elements and thick-walled tracheids in C. colurna. The vessel members form radiating rows, $2 \mathbf{1 0}$ cells in C. avellana, 2-12 cells in C. maxima and $2-6$ cells in C. colurna. The aggregates of 2-5 pores occur in the spring wood of C. avellana and C. maxima. In C. colirna, pore aggregates consisting of $2-12$ cells form 2-3 rows expanding tangentially. The cross-sectional outline of the vessel members is mostly polygonal, rarely rectangular in C. avellana and C. maxima while it is often rectangular and less frequently polygonal in C. colurna. The xylem rays are mostly uniseriate, seldom biseriate in C. avellana, all uniseriate in C. maxima and 1-3 seriate in C. colurna. As an average, there are ${ }_{2} 1$ xylem rays per milimeter of stem section of G, avellana and G. maxima and 16 xylem rays per milimeter of stem cross-section in C. colurna. The heights of the xylem rays vary from 5 to 30 cells, but rays un to a height of 80 cells occur as the result of ray fusion in C. avellana and C. maxima. The xylem rays of G. columa are $7-15$ cells in height, or $n p$ to 50 cells or even more by fusion. With respect to the distribution of wood parenchyma, the stem sections of C. avelland and C. maxima again present a striking similarity. Both of these species have an apotracheal diffuse type of parenchyma which often becomes a metatracheal type (banded) in or near the summer wood of the growth layers. The wood parenchyma of C. colttrna is apotracheal diffuse, often clearly metatracheal, seldom paratracheal scanty.

In all three species, the pith consists of an outer medullary sheath (Eames and Mac Daniefs 1947) of thick-walled, elliptical small cells and an inner region of thin-walled, polyhedral, large cells. The cell size in the medullary sheath ranges from 8 to 41 microns. These cells bear prominently conspicuous simple pits on their walis and contain a large number of simple and compound starch grains. The medullary sheath was stained very deeply with safranin in all stem preparations. Central pith parenchyma cells vary from 35 to 105 microns and contain solitary or clustered crystals of calcium oxalate. The druses occur either singly or in pairs in the idioblasts, completely filling the cell cavity which seems to be devoid of protoplasm and starch grains; or they occur in large
pith parenchyma cells occupying $1 / 3$ to $1 / 5$ of the lumen and being acconpanied by starch grains.

Calcium oxalate druses show considerable size variation from one species to the other and in different tissues of the same species. Fourty druses have been measured from the cortex, secondary phloem and pith of each species in order to study the size variation. The result of these measurements is summarized in Table I. The first figures represent the average values and the parenthetical figures show the minimum and maximum values for the longest axis of druses.

Table $I_{\text {. - Compabison of the sires (in magrans) }}^{\text {or calcium oxalate dauses from 3-yeahs old steme }}$

Tissues	Corylus atellana	Corylus maxtma	Corglus colurna
Cortex.	24.1 (16.9-33.8)	22.9 (10.4-41.6)	38.8 (20.8-67.6)
Second phatoem	11.7 (7.8-18.2)	12.7 (7.8-23.4)	$15.0 \quad(9.1-26.0)$
Pitht	22.9 (13.0-31.2)	21.7 (13.0-36.4)	26.5 (15.6-33.8)

A glimpse at the table shows the fact that in all three species the cortical druses are the largest ones, but those of the secondary phloem being the smallest ones. The average sizes of druses calculated from three different tissucs of C. avellana and C. maxima are fairly close to each other, while the average sizes of druses in Colurna are much larger than those of the former species, Likewise, the size fluctuation, particularly with respect to cortical druses, is very prominent in C. colurna. The frequency of the size classes are presented in three histograns (Fig. 1, A-C). The size classes of druses are indicated along the horizontal lines in terms of decimal groups, the frequencies of size classes along the vertical lines in terms of percentages. The size classes of phoern and pith druses fall into three groups (Fig. 1, A-B), those of the cortical druses into six groups (Fig. 1, C). The frequencies of the size classes follow each other fairly closely in C. avellana and C. maxima. The size classes of druses and their frequencies particularly in the cortical tissue of C. coltrna (Fig. 1, C) fluctuate widely showing a pronounced deviation from those of C. avellana and C. maxima. The size of the calcium oxalate druscs seems to have a diagnostic value at least for distinguishing C. colurna from the other two species. A broad survey of the occurrence and size variations of druses in other organs and tissues as well as a comparative survey of other species of Corylus may lead to finding further diagrostic features along this line.

Secondary xylem elements: Certain characteristics of the xylem elements as observed in transverse sections of the stems were already
described above. The reader is also referred to the recently published atlas of Grefuss (1959) for the descriptions and illustrations of the radial, longitudinal and tangential sections of the stem wood as well as of the wood elements. However, it was inevitable to survey the material in

$\boldsymbol{F} \mid \mathrm{g}$. 1. - Histograms showing the trequencies of the size classes of calcium oxalate druces in stem tinsues of three species of Corylus. Size classes in micrens are indicated along the horizontal lines, their frequencles on the vertical hnes. The stippled columns represent Corplus avellenn, shaded columis C. maxima and the solid black columins stand for C. colurna. \mathbf{A}, Druses of the secondary phloem; B, itucee of the pith parenchyma; \mathbf{C}, Druses of the cortics parenchyma.
macerated state in order to study the size variation and the structural features of the secondary xylem elements.

The vessel members of all three species bear scalariform perioration plates. Vessel members with a simple perforation plate, occur often in C. colurna, very rarely in C. maxima. The end walls of the vessel
members are usually tapering, but rounded tips occur also. In some or the vessel members, one end may be pointed wbile the other may be rounded. The perforation plates are always sloping. The degree of obliqueness is more pronounced in the vessel members of C. maxima than in those of the other two species. Long, tapering, ligulate tips are characteristic for the vessel members of all three species. Bordered pits are crowded, particularly on the tangential walls, being often arranged in alternate, less frequently in reticulate patterns. The bordered pits of the vessel members in C. colurna are olten expanded horizontally and arranged in a scalariform pattern resembling scalariform perforation plates. Reduced, slit-like bordered pits seem to be restricted to the vessel members of C. maxima only. The apertures of these pits are oblique with respect to the longitudinal axis of the vessel members. Helical tertiary thickeninge in vessel members are found in all three species, although rather rarely in C. maxima. Vessel members intermediate between tracheids and true vessel elements occur in C. avellana and G. calurna. Such elements are very similar to tracheids with respect to their form and pitting, but they usually bear a single perforation plate on their lateral walis.

I have not seen any vessel member with reticulate perforation plates. but certain vessel members of C. colurna and C. maxima bear scalariform perforation plates with forking (simple branching) bars, The number of bars in the perforation plates varies even between two perforation plates of the same vessel member. However, the average number or bars and their minimum and maximum extremes seem to have diagnostic importance in the species concerned. I counted the bars of fifty perioration plates from each species. The number of bars varies from 3 to 10 in C. avellana, the average number being 6. The perforation plates in C. maxima have between 1-9 bars, averaging 5. These figures are faily close to each other in the two species just, named. In C. colurna, however, the average number of bars is 9 , fluctuating from zero to 27 . The frequencies of perforation bars in three species of Corglus are presented in a histogram (Fig. 2). The number of bars are marked along the horizontal line, their irequencies along the vertical line. This histogrami shows that the vessel members bearing plates with seven bars oceur most frequently in C. avellana; perforation plates with six and eight bars being next in frequency. In C. maxima, the most frequent number is five, the perforation plates with six and four bars coming next. The frequencies of bar numbers in C. colurna show two separate peaks, i. e. perforation plates with six bars occur most frequently, those with twelve bars being next. C. avellana and C. maxima show certain similar aspects while the frequency curve for C. colurna differs strikingly from both other species.

Tracheids are characterized by their tapering outlines, pointerl tips and crowded, alternating bordered pits. The walls of the tracheids are evenly thick. In C. maxima, the tracheids sometimes exhibit rounded tips associated with a short ligula. Furthermore, the bordered pits of
the tracheids in this species are somewhat expanded laterally, resulting in face view in a slightly elliptical outline. A clear-cut distinction of the tracheids in C. colurna is not always possible due to the presence of imperforate elements, intermediate between tracheids ${ }_{1}$ fober tracheids and libriform wood fibers.

Fiber tracheids are evenly thin-walled, prosenchymatous cells bearing bordered pits with slit like apertures in all three species; thry

Fig. 2. - Histogram showing the frequencies of the perforation bars in the vessel members of three species of Corgius. The bar mumbers are indicated along the borlzontal line. Empty circles connected with dashed lines stand for Corylug avellana, triangles conrierted with dotted then represent G. maxima, and solid circles connected by continuous lines represent C. colurna.
are the most abundant elements of the secondary xylem in G. avellana and G, maxima. Fiber tracheids with ligulate tips occasionally occur in C. maxima. The tips of the fiber tracheids in C. colurna are sometimes shaped irregularly. Host likely, such irregular tips deviating from regular siender tips result from the intrusive growth of the tips. The lateral walls adjacent to parenchyma cells are conspicuously cornered in C. colurna.

Libriform wood fibers are thick-walled; their pointed tips are oceluded during secondary sclerosis. They bear highly reduced, oblique vesligial pits in C. avellana and C. maxima and possess simple pits or straight walls without pits in C. colurna. In the latter case, some wood fibers occasionally appear with minute transverse lines which may represent horizontally broadened, but eventually reduced simple pits,

Wood parenchyma consists of rectangular or tapering vertical elements with lignified, thick walls and simple pits. In C. maxima, they

Talbe 11. - Comparison of the dimensions (in microns)
of secondary xylem elements in the stems of three species of Coryhes

Wood elemexts	Carglus avellana	Corytus maxima	Corijus coluraa
Vessel members	$404(194-518) \times 27$ (13-99)	$352(275-486) \times 31(18-47)$	251 (128-453) $\times 24(16-31)$
Tracheids.	428(324-486) $\times 22(18-29)$	$378(308-502) \times 16(10-21)$	$244(113-437) \times 16(10-23)$
Fiber tracheids .	$567(372-842) \times 17(12-30)$	$486(389-680) \times 16(10-26)$	$360(194-567) \times 12(8-16)$
Libriform wood fibers	$657(518-778) \times 8(5-10)$	$631(486-729) \times 8(5-10)$	$623(518-730) \times 8(5-10)$
Wood parenchyme..	$97(78-114) \times 10(7-13)$	$64(36-124) \times 7(4-13)$	$53(36-78) \times 11(8-13)$
Ray parenchyma	$98(16-38) \times 25(16-32)$	$36(21-44) \times 24$ (13-36)	$27(21-36) \times 18(8-29)$
Brachysclereids in xyleme rays	попе	none	18.5 (12.0-26.2)

are very narrow and resemble septate fibers, but a careful examination shows that they actually form superimposed vertical series. Fusiform parenchyma cells (Committee on Nomenclature, International Association of Wood Anatomists 1957, p. 16) are found in C. avellana. Some "supplementary fibers" (= Ersatzfasern in Greguss 1959, p. 17) occur in C. colurna. These living cells resemble fiber tracheids in outline, but are very short and bear simple pits and slit-like, oblique bordered pits on their thick secondary walls.

Ray parenchyma consists of rectangular cells with thick walls in C. avellana and C. maxima, and relatively thin walls in C. colurna. The marginal cells of the rays are wedge-shaped. Some of the ray parenchyma cells of C. colurna contain solitary crystals of calcium oxalate. The secondary xylem of C. colurna differs considerably from the ot her two species due to the presence of brachysclereids, particularly in multiseriate pays. These brachysclereids are characterized by conspicuously lamellated walls with ramifying pit canals and highly reduced lumina. Some of them are cubical, but many of them exhibit also irregular shapes. Their diameters vary from 12.0 to 26.2 microns, averaging 18.5 microns.

The sizes of wood elements are summarized in Table 11. For obtaining the length dimensions, the tracharey elements were measured from tip to tip. The average measurements are based on $15-20$ measurements for each element. The first figures given for each wood element represent the average length, followed by minimum and maximum lengths in parentheses. The second set of figures separated by (X), represents the average widths of wood elements (with the exception of ray parenchyma cells), followed by minimum and maximum widths in parentheses. The second set of figures given for the ray parenchyma represents the heights of these cells.
C. avellana has the longest wood elements, C. maxima possesses shorter ones; the shortest elements are found in C. colurna as seen in Table II. In other words, there is a progressive decrease in the length of wood elements from C. avellana through C. maxima to C. colurna. One expects to find a progressive increase in the width of the wood elements parallel to the sequence of reduction but this is not the case. On the contrary, the average width of vessel members tracheids and fiber tracheids in C. colurna is smaller than widths given for these elements in C, avellana. In all three species, the width of libritorm wood fibers is constant. The length of wood parenchyma cells shows a definite reduction from 97 microns in C. avellana to 64 microns in C. maxima and to 53 microns in C. colurna, but their widths (10,7 and 11 microns respectively) do not show any sequence towards reduction or increase. Although the dimensions of wood elements exhibit much variation in each species, the figures given for the widths of wood elements in C. colurna and C. maxima are fairly close to one another.

The leaves are simple, alternate, dark-green above, pale green bencath. Very young leaves, while enclosed within the buds are folded along the midribs and accompanied by stipules (Ejchler 1878, 2: 16, fig. 7 E). At this stage, the leaves are almost entirely covered with soft silvery grey hairs. As the leaves emerge from the buds, they unfoid and cxpand, loosing their stipules as well as most of the hairs even before reaching the ultimate mature size. Hlowever, the hairs remain along petioles and major veins on the abaxial side of the leaves. The leaves of C. avellana and C. maxima are quite similar to one another, in both species being roundish ovate to broad ovate in outline, abruptly acuminate at apex and cordate at base. The margins are doubly serrate and slightly lobulate. The lamina is $5-12 \mathrm{~cm}$. long, $3-10 \mathrm{~cm}$. broad in C. avellana. $7-14 \mathrm{~cm}$. long and $5-10 \mathrm{~cm}$. broad in C. maxima. The Jeaves of G, colurna are ovate to broadly ovate, very rarely obovate in outline, acute to cuspidate at apex and cordate to oblique cordate at base. Margins are doubly serrate or crenate serrate, often lobulate. The lamina is $5-19 \mathrm{~cm}$. long and $5-14 \mathrm{~cm}$. broad.

Trichomes: Particularly young developing organs are densely covered by various types of trichomes derived either directly from the epidermis or both from epidermis and cortex. Most trichomes are shed as the organs mature, but a considerable amount of trichomes remains on the veins of the abaxial leaf surfaces, around petioles and young twigs, on the involucral bracts and at the nut tips. Trichomes on the foliage leaves of Corylus species under study present the following types:

1) Unicelludar simple trichomes, varying in length from 40 to 143 microns. These trichomes have a bulbous base usually embedded in the epidermal layer and a long, gradually tapering body terminating in a pointed tip (Fig. 3, F). The lumen is completely reduced in the upper $1 / 2-2 / 3$ portion of the body as the result of secondary wall thickening The basal portions of simple trichomes often retain the protoplast.
2) Seplale simple trichomes, being very similar to the first type, but at the basal portions showing a multicellular condition, resulted from cell divisions within the reduced lumen after the secondary wall formation in the originally unicellular trichome has taken place. Septate simple trichomes also have bulbous base embedded in the epidermal layer and a tapering body having 2-4 cells at its $1 / 3-1 / 4$ basal portion. The upper portion of the body consists of a secondary wall without lumen (Fig. 3, E). The septations of these trichomes are much thinner than the lateral walls and do not exhibit secondary thickening, septate simple trichomes are from 160 to 610 microns long, their average length being 390 microns in C. avellana, 413 microns in C. maxima and 295 microns in C. colurna. The cells of septate trichomes are living and contain some
chloroplasts, Obviously, septate trichomes of Corylns are very distinct from familiar multi-cellular unbranched trichomes such as the staminal hairs of Tradescanlia in which the trichome consists of a single row of rells with equally thick primary walls.
3) Tapled Irichomes which seem to be a cluster of unicellular simple trichomes. They are very similar to the tufted hairs of Quepcus (ef. Esau 1953, p. 154, fig. 7, 8, C). This type is particularly abundant on the leaves and involucral bracts of C. arellana var. grandis and C. maxima var. alropurpurea.
4) Capilale glandular Irichomes are multicellular but much smaller than unicellular or septate simple trichomes. These trichomes consist of a short stalk and a head of radiating secretory cells (Fig. 3, A-D) which secrete a resinous substance. Tbeir total length varies from 36 to 76 microns, average length being 57 microns in C. avellana, 49 microns in C. maxima and 52 microns in G. colurna. The diameter of the head measures, as an average, 30 microns.
5) Ctub-shaped glandular lrichomes, also multicellular, usually occurring along veins of the abaxial leaf surface (Fig. 3, H), These trichomes are 42 to 70 microns long and 14 to 39 microns thick in the upper portion of the body which tapers towards the base. On top, they bear 1-4 secretory cells.
6) Conical glandular lrichomes, $30-10$ anicrons long and about 25 mi crons thick at base, tapering slightly towards the apex (Fig. 3, 1). These trichomes seem to represent a type intermediate between trichomes and emergences since the base of the conical trichomes is lormed by divisions of subepiderinal cells (cf. Netolitzky 1932). Conical glandular trichomes occur in C. colurna more commonly than in the ather two speries.
7) Glandular emergences with a long, conspicuous body derived from epidermal and subepidermal layers and a head consisting of many secretory cells. Resinous and mucilaginous secretions accumulate on the head and appear dark brown to black. These glandular emergences are from 0.4 to 3 mm . long, but in C. colurna var. glandulifera they measure up to 4 mm . The head diameter varies from 50 to 195 microns. A noteworthy feature of these glandular trichomes is the fact that they are photo-synthetic. The ground tissue as well as the epidermis of the emergences contain chloroplasts (Fig. 3, G). Spicular trichomes which represent the most abundant trichome type in C. roslrala Ait. var, californica A. DC. are not present in the species I am dealing with in this рарег.

Epioermis: The epidermis is uniseriate, bearing a cuticle 2 microns thick. There are certain pronounced differences between the juvenile

A

B

C

Fig. 3. - Camera tucida drawingt showing the types of trichanses which ocedr in Corgtus leaves: A-C, Tap views of capltate-glandular trichomes from the petiole of Corytar avellana showine the radiating secretary cells, 1000%; E, A septate smple trichame fram the abaxial side of a leaf of C. aveltana, $335 \times ; \mathbf{F}$, A uniceliular stmple trichome from the petlele of C. colurna, $395 \times ; G$, A dandular emergence of C. calurna. Glandular head is stippled, secretory depasit in black. $230 \times ; \mathbf{H}, \boldsymbol{A}$ club-shaped glandutar tricharne from the leaf al C. auellana, $1000 \times$; Y, A conical glandular trichomed from the leal al C. columo, 1000 x .
leaves of seedlings and the mature leaves of adult plants with respect to the form of the epidermal cells proper. Seen in face view, the anticlinal walls of the epidermal cells are undulate on the abaxial as well as adaxial sides of the fully grown juvenile leaves (fig. 4, A-C, fig. 5, F). The abaxial epidermal cells are usually elongated in one direction; their length varies from 28 to 75 microns as measured in face view. The stomata are confined to the abaxial surface and distributed irregularly. They are of ranunculaceous type and each stoma is accompanied by $4-6$ subsidiary cells (Fig, 4, A and C). This type of stomata is designated as anomocytic type by Metcalfe and Chalk (1957, vol. I, P. XV.). The anticlinal walls of the subsidiary cells are mostly straight in juvenile leaves and usually smaller than the adjacent epidermal cells (fig. 4, C), The stomata are situated at the same level as the epidermal cells. The length of the guard cells ranges from 23 to 29 microns, the width from 7 to 10 microns. The adaxial epidermis of juvenile leaves also exhibit undulations although this feature is less pronounced in C. avellana (fig. 4, B) than in C. maxima and C. colarna. Adaxial epidermal cells in the juvenile leaves of G. avellana and G. maxima measure 39 to 65 microns in length and 13-28 microns in width as seen in face view. The ratio between the epidermal cells and the underlying palisade parenchyma is either $1 / 8$ or $1 / 9$ in both species (fig. 4, B). The adaxial epidermis of the juvenile leaves of G. colurna is quite heteromorphie due to the presence of more or less isodiametric undulate, stellate and rectangular cells, the last type being restricted to the regions along major veins. The diancters of the cells vary from 26 to 36 microns as measured in face view. Palisade parenchyma cells are divided lengthwise, the daughter cells remaining attached in pairs (fig. $5, \mathbf{F}$). The ratio between epidermal cells and palisade parenchyma cells is $1 / 22$.

The abaxial epidermal cells of mature leaves from adult plents are characteristically undulate, but the adaxial epidermal cells are rectangrolar (in C. avellana and C. maxima) or polygonal (in C. colarna) with straight anticlinal walls. In C. colurna, the abaxial epidermis of adult leaves also has typically stellate cells with 4-6 arms extending radially (lig. 5, G). Stellate epidermal cells were not observed in C. avellana and C. maxima. The undulated epidermal cells are elongated in one direction, measuring from 18 to 57 microns in face view. The subsidiary cells of stomata may be straight walled or undulate. They contain mucilaginous substances (fig. 4, D and fig. 5, G). The dimension range of guard cells is the same as stated earlier. The stomata are slightly raised above the surface of the epidermal layer in C. avellana, but appear at the same level with the rest of the epidermis in C. maxima and C. colurna as seen in transverse leaf sections. The outer ledges of the guard cells are well developed forming a front cavity, but the inner ledges are hardly detectable in transections.

Adaxial epidermal cells of the adult leaves vary considerably in form (fig. $5, \mathrm{E}$ and \mathbf{H}), but the anticlinal walls are mostly straight. Mucilaginous epidermal cells are distributed at random, however, elongated

Fig. 4. - A-D, Camera Juclda drawings of epidermis as seen in face view ; mucllaginous subsldary cells are stippled. All drawing $800 \%_{1}-\boldsymbol{A}_{1}$ Abaxial epidermis of the juvenile leaf from a seedling of C. avellana; B, Adaxial epidermis of the juvenlle leaf of C. avelfana; dotted circles represent top views of palisade cells; C , Absxial epidernis of the juvenile leat from a seedling of C. maxima, Note straight walls of subsidiary cells; \mathbf{D}, Abaxtal ephdermfs from the mature leaf of en adult plant of C. maxima. Note undulated walls of subsidiary cells.
rectangular cells over major veins always contain mucilaginous substances (fig. 5, E). Epidermal cells which are in contact with idioblasts containing calcium oxalate druses exhibit prominent wall thickenings all around. The length of the adaxial epidermal cells extends from I8 to 57 microns and their width from 9 to 28 microns. The ratio between epidermis and palisade varies from $1 / 8$ to $1 / 14$ in C. avellana and from 1/7 to $1 / 17$ in C. maxima. This ratio varies from $1 / 11$ to $1 / 13$ in C. colurna which is fairly close to the half of $1 / 22$ ratio given for the juvenile leaves of this species. Undivided palisade cells of adult leaves explain this correlation (cf. fig. 5, F and H).

Mesophyil: Commonly a single layer of cells constitutes the palisade on the adaxial side, but the sun leaves show the tendency to form a regular second layer. The palisade occupies $1 / 4$ of the leal thickness. Idioblasts containing calcium oxalate druses occur in the palisade layer. such cells appear as bright dots when a leaf is examined with a hand lens against a light source. Foster (1956) in his classification of plant idioblasts, has included these idioblasts under "excretory idioblasts". The spongy parenchyma consisis of cells irregularly shaped, with prominent intercellular spaces between. It occupies $1 / 2$ of the leaf thickness. Druses and solitary erystals occur in spongy parenchyma.

Vascular System: The primary vein which traverses the lamina from base to tip projects prominently on the abaxial side of leal. This midrib is hairy on both sides of the leaf, but more densely so on the lower side. The vascular bundle of the midrib is collateral; it appears crescentshaped or closed cylindrical in transections. A limited amount of secondary growth takes place in the vascular strand of midrihs. In transectional view, the tracheary elements are arranged in radial rows. The sclerenchymatous sheath around the bundle is a continuous tissue. In crescentshaped vascular bundles, the bundle sheath selerenchyma reaches the edges of the crescent and partly invades the parenchymatous pith of the bundle in C. avellana and C. maxima. In C. colurna, however, fibers of the sclerencbyma sheath reach the "mouth" of the crescent, but de not "enter" the pith. Subepidermal collenchyma is well developed on both abaxial and adaxial sides of the midrib. Large parenchyma cells containing chloroplasts and calcium oxalate crystals, constitute the cortex between collenchyma and sclerenchyma tissues. The secondary and tertiary veins are enclosed by the bundle sheath. These veins also project on the abaxial side of the leal. Bundle sheath extensions which are strongly developed in C. avellana and C. maxima consist of 1-3-cell layers of lignified sclerenchyma and connect the veins with upper and lower epidermises. In G. colurna, however, bundle sheath extensions are only weakly developed and the thick-walled sclerenchyma cells are not lignified.

The pattern of major venation in Coryfus leaves is craspedodromous (Ettinghausen 186L), i.e. secondary veins follow a direct course towards

Fig. 5. - E-H, Camera lucida drewine of epldermis os senn in face view; satuciaginous epidermais and substary ceils are stippied. Aht drawings $800 \times .-\mathbf{E}$, Adaxial epidermis of a mature leal from an adult plant of C. mosima; dotted eireies represent top views of underlying palisade cells; \mathbf{F}, Adaxial epldermals of the juvenise feaf from a cucker of C. colurna; the top vew of the underiying pabsade cells is shown with dotted cirelas divided in halves, i. e, each circle represents a pair of palionde eells remaintite attachen; G, Abaxlal epldermis from the mature leai of am adult plant of C. colurno; stellate epidermal cells are indicated by arrows; \mathbf{H}, Adoxial cpidermis from mature ieal of C, colurna thowing the polygonal epidermai cells and their relation to palisade cella beneath; each dotted clrcle represents a single cell as contrasted to a pair of cells in Fig. 5, \mathbf{F}.
the leaf margin and terminate in marginal lobes. The veins of the first, second and third categories are considered to constitute the major venation of leaves (Pray 1954). The pattern of major venation is essentially similar in juvenile and adult leaves. The secondaries are rarely opposite near the Iamina base, but mostly alternate each other along the primary vein resulting a typical pinnate venation pattern. The number of secondaries varies between 7 to 9 pairs in C. avellana and C. maxima and between 5 to 12 pairs in C. colurna. These variations in the number of secondaries hold true also for the smallest as well as the largest leaves examined in a wide range of herbarium material, Most likely, the variation in the dimensions of leaf blades resulted from an increase or decrease in the sizes of intercostal areas and ultimate areoles rather than an increase or decrease in the number of veins (Pany 1955, a and b). In C. avellana, the secondaries near the lamina base diverge from the primary vein at an angle of $35-60^{\circ}$, those near the apex of lamina at on angle of $15-30^{\circ}$. The basal secondaries diverge at an angle of $45-90^{\circ}$, those near the blade apex extend at an angle of $15-30^{\circ}$ in C. maxima. The basal secondaries in C. colurna are disposed of at $35-90^{\circ}$ and the uppermost secondaries at $18-25^{\circ}$.

Tertiary veins diverge from the basiscopic side of secondaries at an angle of 25-350 and follow a slightly curved course towards the lamina edges, terminating in marginal teeth. Usually, there are 5 to 8 tertiaries extending unilaterally from the first pair of basal secondaries. The number of tertiaries fluctuates considerably between the members of the same pair of secondaries. The subsequent secondaries in acroscopic direction give rise to a progressively diminishing number of ter* tiaries. No tertiaries develop from the uppermost four to five pairs of secondaries. Tertiary veins bifurcate submarginally, branches running along the margin in short distances and giving rise to minor veins of the 4 th, 5th and 6th categorics. In juvenile leaves from seedlings and zucker shoots, the xylem of secondary and tertiary veins primarily conkains spiral tracheary elements.

Minor venation of juvenile leaves exhibits certain anatomical differences from that of adult leaves. The description of minor venation in juvenile leaves given below is based on first juvenile leaves from yound seedlings of C. avellana and C. maxima and the juvenile leaves produced by rare suckers of C. colurna. Strong similarity regarding morphology and venation patterns in seedling and coppice-shoot leaves of Lacunaria was described by Foster (1951). Hence, for the time being, I am using the sucker leaves of C. colurna for the comparison of minor venation of juvenile leaves while expecting to examine the seedling leaves of this species when such material becomes available to me.

Veins of fourth, fifth and sixth categories and vein endings (ultimate veinlets) which terminate freely in mesophyll, constitute minor venation that forms the reticulum. Quaternary and quinquenary veins often arise directly from secondary or tertiary veins, although generally, each category of vein gives rise to the veins of the subsequent category.

Fig. 6. - A-C, Camera lucids drawinge chowing interquaternary penela and their sulgdivisions formed by minor veins in juvenile leaves. Brotd double lines represent secondary venss, narrow double lines the quaternaries, Soid single lines indicate quinquenary veins. Velns of sixh category and vem endings are shown by dotted lunes, $35 \mathbf{X}$. - A, from the first juvenile leal of a seedlug of C, avellana: $a=$ an unbrenched veln ending, $b=a$ simple, basat dichotomy, $d=$ a multiple dichotomy; 8 , from the dirst juvenile leat ol a seeding of C, maxima. Note the striking smmarity with preceding figure; \mathbf{C}, from a juvenile leaf of a sucker shoot of $C_{\text {s }}$ colurnito Note the prominent decrease of sctual smatfeet distance irom vem to vein, also the trequent formation of toops by the veins of sixth category.

Quaternary veins form interquaternary panels whirh are shown in fig. 6, A-C. Interquaternary panels are mostly polygonal, less frequently irregular rectangular. They are subdivided into a network of areoles formed by quinquenaries and veins of sixth category. Quaternaries which extend near the blade margins terminate in teeth. Interquaternary panels and their subdivisions are strikingly similar in C. avellana and C. maxima (fig. $6, \mathrm{~A}-\mathrm{B}$), except that the ultimate areoles are slightly larger in C. avellana. The long axis of ultimate areoles varies from 324 to 1344 microns in C. avellana, from 372 to 99.1 microns in C. mazima, while the short axis measures from 194-405 microns in the former species and 296421 microns in the latter. Ultimate areoles in C. colurna are considerably smaller, the long axis being 194-421 microns, the short one 145324 microns. Furthermore, the ultimate areoles are somewhat loopshaped, although many are polygonal. Vein spacing in juvenile leaves of C. colurna is much smaller than it is in the other two species,

Actually, vein endings represent branches of veins of sixth category, but they also arise from veins of lower catcgories. Vein endings may be unbranched or 1-3 times dichotomously branched. Repeated hifurcation usually involves only one shank of the veinlet. Dichotomous branching may either take place near the attachment of the veinlet to the vein of the preceding category or more distally (fig. 6, A). Unbranched vein endings are rather common in C. colurna (fig. $6, \mathrm{G}$). Ultimate tips of vein endings consist of one or two spiral tracheids accompanied by thin-walled prosenchymatous cells whose nature could not be determind in cleared material. The length of vein endings measures 129 680 microns in C. avellana, 128.583 microns in C. maxima and 111. 428 microns in C. colurna.

Minor venation of adult leaves consists of vascular bundles of fourth, fifth, sixth and seventh categories and vein endings in all thrce species. The presence of an additional category of minor veins is a distinct feature from the vasculation of juvenile leaves. Apparently, veins of sixth category, described for juvenile leaves, brauch further and give rise to veins of seventh category. The anastomosis of the latter is primarily responsible for the formation of the ultimate areoles. Quaternaries derived from secondaries traverse the intercostal areas and connect subsequent secondarics with each other. Interquaternary panels are often irrerularly rectangular, rarely triangular or variously shaped as the result of branching of quaternaries. Interquinquenary areoles are irregularly rectangular or polygonal. Photomicrographs presented in fig. 7, A-D in part show interquinquenary areoles. In general, minor veins of adult leaves seem to branch and anastomose more frequently than those of juvenile leaves. Consequently, the vascular reticulum of adult leaves exhibit a very complicated pattern as seen in fig. 7, H especially. Ultimate areoles are delimited by veins of seventh category partially in collaboration with minor veins of other categories. Ultimate areoles are variously polygonal in shape, but may also be rounded as in C. colurna. In C. avellana and C. maxima, the ultimate areoles may or may not be provided

lig. 7. - A-D, Photomicrographs showing anastomosis of minor veins and the structure of vein endinge in cleared portions of adult leaves. Material was cleared in KOH solution and stained with safranin. Darkly stamed heavy bundles are quinternary veins. $75 \times$, A. Minor venation of C. avelland. Intezquinternary areoles are ghown partly; B, Rechatgular and triangulat ulthmate areolea fn C. maxima. Nota unbranched vent endings terminating bitindly in the mesophyll of ultimate areoles; C, Polygonal areoles in C.maxima. Note hexagonal ultimate areole without a vein ending near the center of picture; \mathbf{D}, A portion or an mterquinternary areole and its suldivisions in C. colurna. Note dichotomous branching of van endings and their curvatures.
with a vein ending, while in C. colurna most of them are provided with a freely terminating vein ending.

The length of ultimate areoles measures $162-350$ microns in C. avellana, 194-437 microns in C. maxima and 178-518 microns in C. colurna. The width ranges from 48 to 168 microns in C. avellana, from 129 to 259 microns in C. maxima and from 81 to 243 microns in C. colurna.

Vein endings in mature leaves of C. avellana and C. maxima exhibit two types : the unbranched type, stout and straight, and the branching type, slender, bifurcating once or twice. The very tips of both types of vein endings consist of a cluster of short spiral tracheids surrounded by a sheath of large and isodiametric parenchyma cells. Terminal tracheids in C. avellana and C. maxima, are 25,0-39,6 microns long and 7,813,5 microns thick. Individual unbranched vein endings often anastomose and form triangular areoles between. The point of convergence between these bundles is crowded by numerous stout tracheids. Vein endings in adult leaves of C. coletrna are rather long and slender. Uubranched veinlets occur very rarely. If present, they are often horn-shaped. Branching veinlets bifurcate 1-3 times and the adjacent branchlets of two separate vein endings often an astomose and give rise to loop-shaped arcoles (fig. 7, D). Veinlet tips in C. colurna consist of two spiral tracheids which are 20,8-52,4 microns long and 5,2-10,4 microns thick. Vein endings of C. colurna are ensheathed by isodiametric parenchyma cells. Occasionaliy, idioblasts containing druses of calcium oxalate are in contact with vein endings, but as far as 1 could observe, such idioblasts do notvexhibit any particular pattern of distribution with respect to minor venation.

Histology of petioles : Petioles are more or less cylindrical in form and densely pubescent or glandular-setose all around. Those of fully mature leaves of C. colurna loose most trichomes and emergences and become glabrous. The petiole length ranges from 5 to 18 mm in C. avellana and C. maxima. Petioles of G. colurna are much longer, ranging from 1 to 6 cm .

In this paper, the comparative histology of petioles is based on "Coupe caractéristique" (Petit 1887), i.e, transverse sections through distal ends of petioles. However, transverse sections through the middle portions of petioles have also been examined in order to check, at different levels of the petioles, the structural variation of the vascular bundles. In C. avellana and C. maxima, the epidermal cells are relatively thinwalled, The outer tangential walls of epidermal cells are 2,6-3,9, radial walls $1,5-2$ microns and the inner tangential walls adjacent to the subepidermal collenchyma 2,6-3 microns thick. The epidermal cell walls in the petioles of C. colurna are considerably thicker, lumina being reduced. The outer tangential walls of the epidermal cells in this species exhibit distinct laminations, their thickness varying from 5,2 to 10,4 microns. The radial walls are $2,6-3,9$ microns, the inner tangential walls $3,9-5,2$ microns thick.

Гig. B. - A-D, Photomicrographs showiug transverse sectsons of petioles. All platures are ortented with the adavial side upward, $50 \times,-\mathbf{A}$, "Coupe characteristique" of G. aveltana. Note tripartite condition on the abaxial side of the main bundle and the orch-slaped accessory bundic on the adaxial side. Dark projections around the section are the bases of broken płandular emargences, a complete emergenee is extending on the lower side; B, "Coupe characteristique" of C. maxima showng the main vascular bundle with renà. form outline and cylindrical accessory bundle; C, Transverse section through the middlr portion of the petiole of C. colurna showing the contlouity of the moin vascular bundle with the arch-shaped accessory bundle; \mathbf{D}, "Coupe characteristique" of the same petrole
 outline of the main vascular bundle.

Cortical collenchyma consists of 47 layers of cells with equally thickened walls, Collenchyma cells contain chloroplasts and starch grains throughout; the innermost cells contain crystals of calcium oxalate in addition. Collenchyma cells are capable of regeneration. Cork camhium originates from the middle layer of cortical collenchyma, giving rise to a periderm of several cell layers in places where the epidermis is torn as the result of secondary growth in the vascular bundle of the petiole.

Cortical parenchyma has $5-8$ cell layers. Idioblasts containing druses of caleium oxalate and cells containing phlobaphene compounds are abundant. In C. colurna, the innermost cells of the cortical parenchyma bordering the sclerenchyma ring are thick-walled and transversely elongated. In C. maxima, however, innermost one or two layers of cells contain tamic material and form a dark sheath around the sclerenchyma ring.

The vascular tissue of the petiole forms a closed bundle, elliptical or renilorm in outline. The main vascular bundle at the level of the "coupe caractéristique" is accompanied by an arch-shaped accessory bundle in C. avellana (fig. 8, A) and by a closed cylindrical bundle in C. maxima (fig. 8, B) and C. colurna (fig. 8, D) on the adaxial side. A tripartite condition on the abaxial side of the main vascular bundle is cvident in C. avellana (fig. 8, A). This situation may result from the fusion of the originally separate three vascular traces (Kasapligll 1951, p. 159). The transverse section through the middle portion of the petiole in C. colurno (fig. 8, C) shows a striking resemblance to the "coupe caractéristique" of C. avellana, including the tripartite appearance of the main vascular bundle. In all petioles examined, the tracheary elements are arranged radially. Xylem rays are $1-3$ seriate. The phloem tissue is oriented exterior to the xylem tissue resulting a typical collateral arrangement. The main vascular bundles as well as the accessory ones are ensheathed by strongly developed sclerenchyma which consists of 4-7 fiber layers, The continuity of phloem tissue as well as of the sclerenchyma sheath is interrupted by dilating phloem rays which consist of highly lignified and thick-walled cells. The pith parenchyma of the bundles contains starch grains and variously formed crystals of calcium oxalate.

The "coupe caracteristique" taken from the petiole of juvenile leaves of C. colurna exhibits a complicated vascular system, Additional accessory bundles are situated on the lateral sides of the main vascular bundle. Lateral accessory bundles vary considerably in size and structure. They may be either closed cylindrical bundles similar to the adaxial accessory bundle or variously arch-shaped.

STAMINATE FLOWERS AND POLLEK

The genus Corylus is monoecious. Staminate flowers are arranged helically in drooping cylindrical catkins which develop either laterally from the axils of the fallen leaves or terminally on the previous year's
shoots. Staminate catkins form tassel-like clusters. At maturity, the individual catkin's length measures 3-6 em in C. avellana, $5-7 \mathrm{em}$ in C. maxima and 5-12 em in G. colurna. The number of staminate catkins varies from 2-4 in C. avellana and C. maxima and from 2-7 iu C. colurna. The thickness of male catkins at the time of pollen shedding, ranges from 4 to 8 mm in G. avelland and G. maxima, and from 10 to 14 mm in C. colurna.

Staminate flowers are rather simple sinee they laek perianth. Each flower unit consists of 4-8 stamens in C. avellana, 4-10 stamens in C. maxima and 6-8 stamens in C. colurna. The stamens of Goryhs are considered as "divided stamens" throughout the literature since individual anthers eonsist of two microsporangia. Englea and Prantl (189.4 p. 43, fig. 30) illustrate such a divided stamen with a filament splitted halfway, each branch bearing a bisporangiate anther. 1 had to dissect hundreds of staminate flowers in the course of preparing a series of slides in a study of meiosis in pollen mother cells of several species of Corylus and I was paying particular attention to eatch a divided filament. All staminate flowers I examined from various sources had undivided single filaments, each bearing a bisporangiate anther with a tuft of unicellular trichomes on top. Eichire (1875) eonsidered the lengthwise division of stamens in C.avellana as being complete, i.e. all the way down to the base of filaments. In such a case, one would expect to find eaeh pair of "half filameats" either joined at hase or at least opposite to each otlier. So far, I have not seen such an orderly disposition with respect to the filament. Excellent detailed illustrations of flowers can be found in Reichenbach's (1849-1850) Flora, in which the filaments are shown as unforked appendages. So far as 1 am aware, these "divided stamens" are not thoroughly investigated from the point of ontogenesis and I believe such a study may lead to reliable evidences toward understanding the morphological nature of stamens in Corylus. Provisionally, 1 consider each filament with its bisporangiate anther as a unit of "stamer". The number of stamens per flower fluctuates in different plants as well as in a single infloreseence. A specimen of C. avellana I collected in Paris had flowers with $5,6,7$ and 8 stamens in the same inflorescence. A single catkin of C. maxima, also from the same locality. hed terminal flowers with 4 stamens while the basal flowers of the same catkin had 8 stamens. Another C. maxima from Paris had 10 stamens per flower which was a constant number in different catkins of the same plant. Male flowers of a eultivated C. colurna in Zurich had 8 stamens as the most common number, but a herbarium material of the same speeies colleeted from China most eommonly had 6 stanens per flower. Dehiseence of anthers is longitudinal. Stamens are adnate to bracts through the basal portions of their filaments.

Eaeh flower is subtended by two small prophylls and a bract. Prophylls also, are adnate to the bract at their bases; their tips are free. Usually, both prophylls are equal in length, but occasionally one of the prophylls is shorter than the other.

Interesting teratological formations of staminate flowers were reported by Hjelmgvist (1948). According to this author, one or two stamens may be "transformed" into carpels, resulting bisexual flowers in C. colurna. He also describes the occurrence of a structure intermediate between a stamen and a carpel from the male flowers of the same species. I observed androgynous catkins in C. maxima in a plant growing in the Botanical Garden of Gencva. Some staminate catkins of this plant had several pairs of pistillate flowers at the tip of the catkins. A cultivated C. colurna in the Botanical Garden of Zürich had many staminate catkins forked at their tips. In G. avellana, $20-30$ staminate catkins form very dense clusters sometines (Penzig 1894),

Filberts are anemophilous and nectartess just like hornbeams, bircbes, alders, oaks and beaches (Jones 1939), Pollen is produced in abundance which insures pollination. L'sually, staminate and pistillate flowers of the same plant do not mature at the same time, so that the plant is functionally of one sex at a time. This mechanism favours cross pollination in filberts (Phlipson 1948). According to Erdtuan (1904), pollen shedding dates of the European filbert vary from December 27th in Coimbra, Portugal to April 6th in Stockholin, Sweden. Apparently the date of pollen shodding is vary much influenced by weather conditions. During the first week of April, while I am writing these lines, the male catkins of all three species of Corglus in St. Gallen, Switzerland, are still dormant. However, a few branches brought into room temperature began shedding their pollens within two days.

Pollen grains are borne in tetrahedral quartets, each grain being commonly provided with three pores which tend to be equally spaced around the equator. The pores project along the sides of flattened grains and give rise to a triangular outline in polar view (fig, 9, A-C). The pore type of Corylus is designated as a club-shaped pattern by Wodehouse (1959) in which the exine is gradually expanded towards the pore as seen in optical sections (fig. 9, C-F), Apertures are circular or slightly elliptical. The grain surface (texture) is smooth or faintly punctuate. The ratio between polar axis and total breadth of grains ($100 . \mathrm{P} / \mathrm{E}$) varies from 77,9 in C. colurna to 78,9 in C. avellana and C. maxima. Hence the pollen grains of all three species fall into the suboblate shape class (Eride man 1952, p. 16). In optical sections, sporoderm thickness is 1,3 microns in C. avellanta, 1,6 microns in C. maxima and 1,7 microns in C. colurna as an average of ten measurements for each case. Unfortunately, no pollen material was proccssed for the purpose of analysing sporoderm stratifications. The exine of Corylus pollen consists of two thick and three very thin layers when these grains are treated with sulphuric aeid, dilute chromic or potassium hydrate (Wodehouse 1959). Pla Dalmau (1961, p. 209) reports the exine thickness in pollen grains of C, avellana as between 0,5 and 0,7 microns.

I surveyed 200 pollen grains of each species to find out the frequencies of pore numbers in each species. Dimensions of pollen grains summarized in Table IfI are based on 25 measurements in each case. The first figures

Ffy. 9. - A-E, Photomilcographs showing the opticnl sections of pollen grains: A. Polar view of a poifen gratn of C. eneflana stained with methylene blue, $1200 \times$; $\mathbf{B}_{\text {, Potien }}$ grains of G. maxime, bleached, but unstatined, $460 \times$; , Polar view of a polfengath of C. maxima, $1000 \times ; \mathbf{D}$, Equatoriai vjew of a poten grain of C. mazima, unstained, $1000 \times$; E. Polar view of a 3-porate pollen grain of C, colurna, anstatned, $1000 \times ; \mathbf{F}, \mathbf{P}$ olat view of a ifporata pollen grain of C. colurna, unstained, $1200 \times$.

Table th, - Companison of the falynological chathcteftstica and dinensions of pollev grains in three species of Corghas.

Fratures	Corglas avellana	Corgfus maxima	Corylus colurna
Source of material	Breslau (C. Bentiz, Herb. Paris)	Pisa (Cesall no 750, llerb. Paris)	Kastamond, Tosya, Gavurdagh (Sintenis no. 4809, Herb. Paris)
Number of pores..	Alt 3-porate	Moslly 3-porate, rarely 2-or 4-porate	Mostly 3-or 4- porale, rarely 2-5- and 6- porate.
Texture	Psilate-faintly punctuate	Same	Same
Shape classes.....	Subobtate $100 . \mathrm{P} / \mathrm{E}=78,9$	$\begin{gathered} \text { Suboblate } \\ 100 . \mathrm{P}: \mathrm{E}=78.9 \end{gathered}$	Suboblate, $\text { 100. P/E } / \mathbf{E}=77.9$
Equatorial diameter as seen at polar view.	$25.2(23.2-27.2)$	$24.7(22.4-27.2)$	25.9 (12.8-30.7)
Polar axis........	19.9(19.2-21.6)	19.5 (17.6-20.8)	$20.2\{17.6-24.0\}$
Thickness of aspis (protrusion of germ pore)	$2.2(2.0-2.5)$	2.9 (2.8-3.2)	3.0 (2.8-3.2)
Thickness of sporoderm	1.3 (1.2-1.6)	1.6 (1. $5-1.8)$	1.7 (1.6-1.9)
Diameter of aperture.	$2.0(1.8-2.4)$	2.0 (1.6-2.4)	1.7 (1.2-2.4)

given for each item represent the average values in microns. The extreme values, i. e. minimum and maximum dimensions are indicated in parentheses following the average values.

In the material I examined, the pollen grains of C. avellana were exclusively 3-porate. However, Erdtman (1954, referring to Sandegren's data) reports that out of 2000 grains $99,8 \%$ had three and $0,2 \%$ two or four pores. In the literature, the equatorial diameter and the polar axis length given for pollen grains of C. avellana differ considerably. Average dimension with respect to equatorial diameter and polar axis is $25,2 \times 19,9$ microns in my survey. Pollen dimensions of C. avellana are variously reported in literature: 28×22 (Erdtman 1954), 26.5×22 (Wodehouse 1959), and 25×22 microns (Pla Dalmau 1961). Dimension extremes given by HEG1 (1957) vary from 22-32 microns for the equatorial diameter and from 15-18 microns for the polar axis as contras-
ted to my figures of $23,2-27,2$ and $19,2-21,6$ microns respectively. These differences in pollen dimensions may be attributed either to a racial sifference within the same species or to different methods of treatment during the preparation of pollen slides. As a matter of fact, Schoch-Bodmer (1936), Fabgri and Deuse (1969) and Drugg (1962) demonstrated the variations in dimensions of pollen grains according to mounting media and preparation techniques.

Pollen grains of C, maxima are more similar to the grains of C, avellana than they are to those of C. colurna. 99% of the grains of C. maxima are 3-porate and 1% only 2-and 4-porate. iverage dimension of 3-porate grains is $24,7 \times 19,5$ microns. The dimension of 2-porate grains is $2,6 \times 20,8$, of 4 -porate grains $24,8 \times 20,8$ microns. Sporoderin is thicker than that of C. avellana, but the diameter of aperture is nearly the same as in C. avellana.

Pollen grains of C. colurna show more striking variation than those of the other two species. 68,5 \% out of 200 grains are 3-porate, 29% four-porate, 1% two-porate, 1% five-porate and $0,5 \%$ six-porate. The equatorial diameter of 2 -porate grains measures 14,4 (12,8-16,0 microns; their outline somewhat resembles the equatorial view of a regular 3-porate grain. Most likely, these grains are sterile. Three-porat? grains have an equatorial diameter of $26,0(20.8-28,8)$ microns; thrir outline tends to be somewhat circular rather than being triangular in polar view (fig. 9, E). Due to pronounced protrusion of germ pores. 4-porate grains ordinarily appear somewhat like a square in polar vien (fig. 9, F). The longest equatorial axis of 4 -porate grains measures 27,1 ($25,6-30,7$) microns between two opposite apertures. Occasionally: 4 -porate grains appear in rectangular outline in polar view. Such grains are much smaller than the majority of 4 -porate grains, measuring 12,514 microns along the short edge of the rectangle and $11-17$ microns along the long edge, as seen in polar view. The equatorial diameter of 5 -porate grains is $22,0(21,6-22,4)$ nierons; their outline in polar view is pentagonal, Apparently 6-porate grains are very rare. The only such grain which was observed had an equatorial dianeter of 22,4 microns, the grain outline being hexagonal. 7 -porate grains have not been obscrved. The mean dimensions of all five different types of pollen grains in C. colurna are presented in Table 11I.

1 t is interesting to note that the dimensions of any particular structure of pollen grains, including the thickness of aspis and sporoderm, exhibit as wide a range of variation as any other structure which has been considered in the present study.

PISTILLATE FLOWERS AND FRUQIS

The inflorescences bearing pistillate flowers are quite different from staminate catkins. Pistillate flowers are borne in mixed buds which develop in leaf axils or lateral to terminal buds. At an early stage, from
late summer through winter, mixed buds are externally quite similar to purely vegetative buds. In addition to young folded leaves and their stipules, they contain also 4-8 pairs of pistillate flowers at their tips, Mixed buds remain dormant until early spring. Only crimson coloured stigmas of pistillate flowers protrude from bud scales at the time of pollination, During dormancy, mixed buds are $5-6 \mathrm{~nm}$. long in G. avellana and C, maxima, $7-8 \mathrm{~mm}$, long in C. colurna. About $8-9$ oval and concave bud scales with ciliate margins and chaffy tips envelope primordial leaves and pistillate flowers. Bud scales are tomentous on their abaxial sides and glabrous on the adaxial surfaces, except at their bases where unicellular trichomes are crowded. Eventually, mixed buds develop into short, leafy branches which at their tips carry the cluster of fruite.

Pistillate flowers form dichasial cymes in the axils of subtending bracts which are helically arranged around the condensed axis of mixed buds. Ordinarity, in cymules the central flower is absent. Until pollination, each flower consists of two long stigmas and a bulbous base halfway covered by prinordial prophylls which upon maturity develop into fruit involucra (husk). Pistillate flowers of C. avellana and C. maxima dissected around the middle of Octoher had stigmas from 1800 to 2600 microns long and from 140 to 220 microns thick. At this stage, the "bulbous" base measured 580 microns in diameter. The primordial calyx was hidden inside the primordial involucra. Ovary and ovules develop from an intercalary ineristem at the stigma base during May (Hagerve 1942). Pistillate flowers of C. colurna dissected also around the middle of October had stigmas from 900-1000 microns long and $240-280$ microns thick. Likewise, the "bulbous" base of young gynoecium which develops into an ovary after pollination, was surrounded only basally by primordial prophylls. The stigmatic surface is puberulent. The vesicle-jike epidermal cells contain anthocyanine responsible for the showy purplecrimson color of the stigmas.

The bicarpellate nature of the ovary is clearly established (Hagenup 1942 , Eames 1961) although it was formerly described as being monocarpellate. The unilocular ovary possesses two parietal placentae, each hearing 1-2 ovules. Young ovules are orthotropous and pendant, but they bend later, acquiring a campylotropous condition. The ovules have single integument, the micropyle facing upward. Chalazogamy which was discovered first by Navashin, takes place in July, after 3-4 months iollowing pollination. Usually one ovule develops into a seed while the other one becomes abortive.

For the sake oi convenience, the rudimentary and undifferentiated floral envelope adnate to the ovary are referred to as "calyx". EichenR (1878) applied the term "perigon" to it, stating that it consists of 4-8 ininute teeth near the apex of the ovary. These teeth are shown as individual perianth segments in Eichler's floral diagram for C. avellana. According to Eichler, the rudimentary "perigonium" is completely obliterated during later growth. On the other hand, Hagerup
(1942) who uses the term "perianth", shows clearly that it remains adnate to the mature fruit. So far as I know, the morphological nature of "calyx" in pistillate flowers is not known clearly, Does it originate from the intercalary meristem at the base of stigmas or is it produced by the apical meristem of the flower? Do the inarginal teeth really represent perianth segments, as assumed by Eichler? If this would be the case, a "synsepalous" condition would enter the picture. Both, vasculat anatomy and histogenesis of pistillate flower of Corghus deserve careful investigation which may produce an answer to these questions.

The familiar nuts of C. avellana are $1-2 \mathrm{~cm}$, long, $9-16 \mathrm{~mm}$. broad and occur in clusters of 2-8 or sometimes singly. Involucral bracts are almost separate, broadly lobed, exposing the nuts. Involucral scars in the bottom of nuts are usually submedian. However, all these features are variable. Geitler (1943) showed variation in fruit dimensions as well as in sizes and divisions of the involucral bracts in wild populations of the European filbert.

The nuts of C. maxima are $1,5-2,5 \mathrm{~cm}$. longr, $12-16 \mathrm{~mm}$. broad and almost cylindrical in slape. They occur in clusters of 4-8 fruits, Coalescent involucral bracts eaclose the nut within and extend beyond it. The husk splits laterally to release the nut at maturity. The involurral scar remaining in the bottom of the fruit is usually basal, but submedian scars are not untommon,

The fruits of G. colurno are $15-21 \mathrm{~mm}$. long, $10-18 \mathrm{~mm}$. broad and ovate to obovate in shape. Usually, the nuts occur in clusters of 2 -6 fruits, but larger clusters with many more fruils are also found. The nut shell in this species is much thicker, the seed within smaller than those of the other two species. In the european varieties, the involucral bracts fork deeply into lanccolate or triangular lobes, exposing the nuts half way, The husk of the asiatic varieties however, encloses the nut and even extends beyond it. Typically, the involucral scars left on the nuts are median, but this feature as well as the shape and dimensions of the muts are quite variable (cf. Kasapligil 1963 b , fig. 4).

Interesting teratological pistillate cymules were described by Weass (1932). According to this author, Corylus shrubs pruned in hedging produce unbranched shoots which give rise to terminal pistillate eymules with three flowers. The subtending bract of such an abnormal cymule with median flower is tripartite instead of being sinple. 1 have seen a perfectly normal staminate flower in a pistillate inflorescence of C. maxima. The nuts of this species are occasionally triangular, suggesting a tricarpellate fruit. Likewise, the fruits of C. colurna sometimes bear three wilted stigmas on top instead of the normal two (Kasapligil 1963 b, fig. 5, K-L). Eichler (1878, p. 17, footnote) points out that the occurrence of 2 or 3 seeds in common hazelnuts is not seldom. Penzig (1894) reports the frequent occurrence of tricotyledonous embryos in C. avellana.

The present study has been deating primarily with the histology of certain vegetative organs of three species of Corylus in an attempt to understand the degree of phylogenetic relationship between the species under consideration and the position of the genus within the family Betulaceae.

Histology has long provided taxonomy with characteristics of phylogenetic importance through comparative observations on wood anatomy, epidermal features, nodal anatomy, foliar vasculation etc. as well as through ontogenetic studies, A comprehensive review by Constance (1955) clearly shows the increasing attention of botanists in the application of histologic criteria to the problems of systematic botany. Due to convergences and parallel evolution, phylogenetic affinitics can not be judged by a single line of evidence from any particular organ by using the tools of a single discipline. It is essential to survey all plant structures in the light of all disciplines in order to reach a sound natural classification (Baleey 1949), Bearing this in mind, I tried to gather some phytogeographic data and bring out additional evidences through comparative morphology and palynology. Therefore, the distribution of three species of Corylus, comparative morphology of their flowers and palynological characteristics have necessarily been taken into consideration.

The observations regarding vegetative and reproductive structures of three species of Corylus indicate elose similarity between C. avellana and C. maxima, while C. colurna differs strikingly from the other two species. The present distribution areas of C. avellana and C. maxima coincide with each other from south-eastern Europe through northern Anatolia to the Caucasian region. The latter species has a rather restricted area while the former species presents an extensive distribution throughout Europe and in the Near East, reaching the Scandinavian peninsula in the North and the Lebancse mountains in the South. The specimens of C. maxima collected from north-eastern Anatolia show the widest range of variation which suggests that the center of speciation may be in this particular region of Turkey.
C. colurna with its arboreal habit remarkably differs from the other two shrubby species with respect to its anatomic structures as well as its distribution. The Turkish filbert with its four varieties grows from south-eastern Europe through northern Turkey and the Himalayas up to China. Only the western tip of its area overlaps with the distribution areas of the other two european species. I assume that C. colurna is more closely allied with C. ferox Wall. = Himalayan filbert., than it is either with C. avellana or C. maxima. The areas of C. colurna and C. ferox coincide with each other in the Himalayan region. Both of these arboreal species might have been derived irom a common arboreal ancestor. The involucral bracts around the nuts of C. ferox are highly lignified
and very spiny, the whole cluster of fruits resembling a chestnut bur, However, a close examination reveals the fact that the involucral bracts in C. colurna and C, ferox are deeply laciniate, the slonder Iobes being stifly spinose in the latter species and sinnous in the former. Unfortunately, there is no information on the finer structure of C. ferox to make a further detailed comparison with C. coturna. Considering their distribution and gross-morphological features, C. colerna var. lacera (Wall.) A. DC. stands nearest to C. ferox, as far as I can judge.

Primary stem structure is basically the same in all three species studied. Solitary crystals and druses of calcium oxalatc occur in the cortex, phloem and pith tissues of stems as well as in the foliage leaves and floral bracts, a feature which is also common in other betulaceous genera such as Alnus, Belula, Carpinus, Ostrya. In three year old stems of G. colturna, druses occurting in cortical parenchyma, secondary phloem and pith parenchyma are considerably larger than those of the other qwo species. This seems to be a good diagnostic feature for $C_{\text {, colurna. }}$, The size variation of druses within the tissues mentioned above, particularly those in cortical parenchyma, show a narrow range in C. avellana and C, maxima, a wider one in C. colurna. The frequencies of size classes of druses follow a similar pattern (fig, 1, A-C) in C. avellana and C. maxima which may be considered as an indication of closer affinity between these two species.

In C. columa, the cortical collenchyma of three year old stems is a continuous cylinder while in C. avellana and C. maxima it is interrupted by the secondary stem growth. Bizarre brachysclereids occur individually or in clusters within the secondary phloem tissue of C. colurna stems, while these idioblasts are absent or exceedingly rare within the corresponding tissue of the other two species. The restitutional capacity of the cortical collenchyma and the extensive occurrence of brachysclereids in G. coturna stems may be looked upon as a more specialized condition.

The wood of Corylus and of all other genera of Betulaceae is diffuse porous, the pores being arranged radially as seen in cross sections. Waviness of growth layers in secondary xylem is a common characteristic for Corgtus as well as for other genera of Betulaceae, except for certain species of Belula. The undulations of growth layers are most prominent in the species of Carpinus and hardly noticeable in Betuta penduta and B. pubescens. However, Betala humitis, B, nana and B. raddeana stems exhibit clear undulations of growth layers in transverse sections (Greguss 1959 , pl. 2, 3, and 6). The number of xylem rays varies from 16 rays per millimetre in G. colurna to 22 rays per millinetre in C. maxima. In species of Athus and Betala, the number of xylem rays per millimeter varies from 16 to 20 and from 14 to 22 respectively, Minor differences aside, the numerical ranges of xylem rays mentioned above are fairly close to each other in these genera.

The vessel members bear scalariform perforation plates throughout the family. The perforation plates in C. avellana and C. maxima are wider, the number of bars is smaller than in C. coturna which suggests a more
specialized condition in the first two species. On the other hand, the vessel members of C. colurna are much shorter than those of the other species. There is a peculiar combination of advanced and primitive features in these elements. The number of bars in sealariform perforation plates varies from 10 to 20 in the species of Belula and from 10-22 in the species of Alrus (cf. Greguss 1959, pls. 2-10). This variation falls within the range of variation observed in the perforation plates of C. colurna. (Furthermore, pointed end walls of vessel members and the obliqueness of perforation plates seem to be a common feature throughout the family.) Bifurcation of perforation bars described in C. maxima and C. colurna also oceurs in Alnus subcordata, A. viridis, Betula humilis and B. nana. Pointed end walls, oblique perforation plates and the main features of pitting seem to be more or less unilorm throughout the family despite certain variations. Tertiary helical thickenings described for vessel elements of Corylus occur also in Betuta raddeana, According to Hall (1952), helical thickenings are present in the vessels of Carpinue, Osfrga and Osiryopsis.

Tracheids and vessel members constitute the bulk of the secondary aylem in C. colurna while in G. avellana and C. maxima the bulk of wood consists of fiber tracheids. Tracheids are tapering cells with pointed tips bearing many rounded or elliptical bordered pits. This characteristic applics to the whole family. Tracheids and all other vertical wood elements are generally shorter in C. colurna than in the other two species. The occurrence of brachysclereids in xylem rays seems to be a specialized condition limited to C. colurna. Aggregate xylem rays occur throughout the family, although infrequently, Likewise, apotracheal diffuse parenchyma with a tendency to metatracheal and paratracheal conditions is a common characteristic of most of the genera in the family. The supplementary fibers (Ersatzfasern) observed in wood parenchyma of C. colurna represent another distinguishing feature.

In Corylus as well as in other genera of the family, leaves are simple, stipulate and arranged alternately. With the exception of entire-leaved Alnus nepalensis, leaf margins are doubly serrate. In Corglus, very young leaves enclosed within buds are folded along midribs. This feature constitutes a generic characteristic for Corylus since the young leaves within buds are folded along secondary veins in all other genera of the family, Unicellular simple trichomes are common throughout the family, but septate simple trichomes described for Corylus occur in Alnus and Ostryo as well. Capitate-glandular frichomes occur frequently in the family. The stalk of the capitate-glandular trichomes in Carpinus belulus, C. caroliniana, Ostrga carpinifolia and 0 . virginiana (cf. Metcalfe and Chalk 1957, vol. 2, p. I302, fig. 311, G-H) consists of a single row of cells which seem to be a modification of capitate-glandular trichomes described in Corylus. With respect to the form of their glandular heads, these trichomes stand intermediate between typically capitate hairs and club-shaped glandular hairs of Corglus (Fig. 3, D and H). Peltate glands or scales bearing a palisade like glandular epidermis in Belula
(Esau 1953, p. 156, fig. 7, 10, E; Heg1 1957, Ilf/1, p. 142, fig. 55, e; Metcalfe and Chalk 1957, II, p. 1302, fig. 311, B-D) and Alnus simply represent a modification of capitate glandular trichomes of Corylas (cf. fig. 3, A-D). The somewhat flattened head of glandular trichomes of Oslrya seems to represent an intermediate form between capitateglandular trichomes of Coryhus and peltate scales of Belula and Ahas. Radiating secretory cells seen in fig. $3, A-D$, are very similar indeed to the palisade-like glandular epidermis of peltate scales. The multicellular stalks of these trichomes are obviously similar to those of the glandular trichomes except for the fact that the stalks of peltate glands are shorter and that they are somewhat sunken in the leaf surface. The glandular emergences described here (fig. 3 G) do not occur in other genera. They seem to represent a generic characteristic for Corglus.

In agreement with Metcalfe and Chalk (1957) the stomata definitely have subsidiary cells, although some recent literature (HEGi 1957, $111 / 1$, p. 138) clains that they are absent. The anomocytic stomata in Corylus as well as in other members of Belulaceae are confined to the abaxial leaf surfaces (except in Alnus orientalis which has stomata on both sides). However, this feature may not be of phylogenetic signilicance since many umrelated angiosperms possess anomocytic stomata. Both, upper and lower epidermises of juvenile leaves of all three speries of Corylus exhibit undulations along the anticlinal cell walls while the undulated epidermal cells are confined only to the lower surfaces of adult leaves. A similar condition in the juvenile leaves of Umbeltularia and Laurus was interpreted by the author as a seedling recapitulation (Kasaplagil 1951, p. 161-161). The abaxial epidermis of adult leaves in C. colurna tends to develop stellate epidermal cells, a specialized condition not observed in other species of Corghus. Mucilaginous cells in epidermis oceur widely throughout the family.

Craspedodromous type of major venation pattern of leaves is a common feature in all members of the family. In the different genera, secondary veins are straight or slightly curved. Their divergence angles from the midrib vary between $50-60^{\circ}$ in Alnus, $45-75^{\circ}$ in Belula, $35-45^{\circ}$ in Carpinus and $40-50^{\circ}$ in Osirya (Ettinghausen 1861). In Corglus leaves, the divergence angles of the secondaries show a wider range of variation due to the auriculate condition of the cordate basis of blades and the abrupt acuminate form of the leaf apices. In the genera mentioned above, the tertiary veins develop from the basiscopic sides of the secondaries and terminate in marginal teeth \{cf. Ettinghausen 1861, Pl. 1, fig. 5 and Pl. 1I, fig. 1, 4, 10, 11). This holds true also for Corglus. Another striking resemblance concerning major venation is the fact that the number of tertiaries diminishes gradually towards the leaf apex.

The minor venation of juvenile leaves of Corylus consists of veins of fourth, filth and sixth categories and of vein endings. In the adult leaves, an additional category of minor veins is present. Apparently, veins of the seventh category are derived from further ramification of
veins of the sixth category. Their frequent anastomoses result in the formation of ultimate areoles and in a complex reticulum in adult leaves. Possibly, the evolution of the venation pattern in Corylus follows a trend from a simpler reticulum towards a more complex venation pattern, Most of the ultimate areoles in adult leaves of C. colurna are provided with slender and repeatedly branched vein endings, which under a hand lens, help to distinguish C. colurna leaves from the leaves of other species.

In Corylus, the main vascular bundle of petioles at the level of the "coupe caracteristique" appears closed elliptical or reniform in outline, but often they shift to crescent shape in the midrib of leaves. Metcalfe and Chalk (1957) report crescentic vascular strands in the petioles of Alnus and Belula which seem to be similar to the outline of some main vascular strands in the midribs of Corylus leaves. Solefeder (1908) reports that in Alurs and Belula, three or more bundles enter the petiole base, a condition which supports my assumption that the tripartite vascular hundle in Corylus resulted from the fusion of the originally separate thrce hindles.

Generally, it is considered, that the staminate flowers of Corylus consist of "divided stamens". As I explained in the text, I lound no evidence of "divided stamens" in the material I studied. If we accept. the claims regarding complete division of stamens all the way down to the base of filaments, we would expect to find even number of "half stamens" instead of odd numbers, The fluctuation of the number of stamens per flower was pointed out earlier in this paper. Flowers with $5,7,9$ stamens are not uncommon. One would immediately suspect the abortion of a "half stamen" from a "normal flower" with an even number of stamens, but there is no sign of ahortive stamens in flowers with an odd number of stamens.

According to Eames (1961, p. 132) the single vascular bundle of the stamen arises from two traces in Corplus. I interpret this condition as the fusion of two traces giving rise to the vascular supply of a stamen. Hence, even the vaseular anatomy of the stamen does not seem to he in agrcement with the assumption of divided stamen in Corphus. However, hefore knowing the ontogeny of stamen in Corglus, it is not possible to make a clear-cut decision at this point.

Pollen grains of Corylus are mostly 3 -porate, but this number is not well established in the species I studied. The pore number fluctuates from 2 to 4 in C. avellana and C. maxima. However 2-or 4-porate grains are very rare in both species. On the other liand, 4-porate grains show a high frequency in C. colurna. Grains with 2,5 and 6 pores also occurred in a pollen crop obtained from a single catkin. Different pore numbers of grains does not appear to be a racial charactcristic. Perhaps, these differences are caused by chromosomal non-disjunction and aberration which often take place in C. colurna during meiosis of microsporogenesis. Pollen grains with different pores occur in several other genera of Belulaceae. Pollen grains of Alnus are often 4- to 5-porate, rarely 3- or 6-porate
(Wodehouse 1959). Particularly, 4-porate grains of A. glatinosa (Erdtman 1954, p. 68, Pl. IV, fig. 52-53) and A. incana (ibid., Pl. IV, fig. 5657) are very similar to the 4 -porate grains of C. colurna, but the pollen grains of Alnus differ from filbert pollen, mainly through the presenee of an endexinous floor under eaeh pore. Pollen grains of Belada are mostly 3-porate, but grains with 4 to 7 pores also oceur (Wodehouse 1957). The pores of Belula pollen projeet more strikingly than those of Corglus pollen. Firbas, F. and I. (1958) report that the pollen grain of Carpinus betulus fluctuates between 2-and 7 -porate conditions, 4 -porate grains being most frequent. These authors also point out the variation of pore numbers in grains from a single catkin and attribute the possible cause of it to differences in the mutrient supply required for the formation of pollen grains. The pores of pollen grains of Belula are more strikingly aspidate than those of Corytus. Pollen grains of Osirya are either 3-or 4-porate. Apparently, Osirgopsis is the only genus which exhibits a fixed 3-porate condition only (Erdtman 1952). As a whole, mean size variation of pollen grains in the family ranges from 20 to 30 microns according to Erdtman (1952). They all exhibit a suboblate shape and psilate or faintly punctuate texture. In short, pollen grains of Belulaceae are rather homogeneous, an indication of close aflinity among the genera of the family,

The pistillate flower of Corylus, as I pointed out earlier in this paper presents a number of problems. Perhaps, one of the most important questions concerns the position of the ovary which by several authors has been eonsidered as being inferior. This "criterium" has been used hastily to segregate Corylaceae from Belulaceae. Is the ovary in Corylus really inferior" Indeed, the so-called "calyx" or "perigonium" is adnate to the ovary. As I explained before, we do not know the true morphological nature of the "calyx" in Corylus. It may be an appendicular or reeeptacular structure; both instances would justify designating the ovary as being inferior. On the other hand, the "calyx" of Corylus may represent modified bracteoles or even non-functional gynoecial neetaries. In sueh instances, however, the ovary ean not be considered inferior. The solution of this morphological puzzle awaits further investigation, particularly from the viewpoints of histogenesis and vaseular anatomy.

Considering the phylogenetic trends in gynoecia of Angiosperms (Constance 1955, p. 427) the biearpellate, syncarpous gynoecium of Corylus with a reduced number of ovules is highly evolved. The occasional occurrence of triearpellate fruits in Corylus may be considered a reversion, i.e. possibly the bicarpellate gynoecium of Corylus is derived from a tricarpellate gynoecium through the reduction of one of the carpels. Likewise, the ovules show a reduction from four to two and finally only one seed develops per fruit, the other ovule remaining abortive.

It is not easy to interpret plant teratologies although there is a general tendeney to speeulate about structural aberrations as being genetie reversions or so-called "atavisms". In aceordance with such a speculation, teratologically hermaphroditic flowers of Corylus described by Hidelmovist (1948) may be interpreted as a prototype for the present
unisexuel flowers. The pistillate cymules of Corylus, Alnus and Carpinus normally consist of two flowers. The occurrence of a third flower was reported by Weiss (1932) in Corylus, by Kırchner, Loew and Schröter (1913, p. 196) in Atnus and by Hegl (1957 IIT/1, p. 182) in Carpinus, a situation very similar to normal cymules of Betula.

Undoubtedly, Corylus is a homogeneous genus, Nevertheless, the degree of genetic affinity among the member species varies. From my present survey on three species, \mathbf{I} conclude that C. avellana and C. maxima are two closely allied species and C. colurna, which exhibits distinct structural and distributional deviations from both other species is a distant relative. Several hybrid forms between C. avellana and C. maxima are well known cultivated plants. These hybrids produce nuts which is an evidence of interfertility and close genetic relationship between these two species. On the other hand, the hybridization between C. colurna and either one of the other two species does not seem to be possible. The hybrid species Corylus \times colurnoides Schneid. (Syn : Co avellana \times colurna Rehder, G. colurnoides Schneid., C. inlermedia Lodd.) described from cultivated plants, is not known from natural populations although the areas of supposed parents overlap each other in south-eastern Europe and in the Near East. No specimen of the well known "hybrid species" exists in any of the following herbaria: Univ. of California, Berkeley; Royal Botanic Gardens, Kew; Muséum d'Histoire Naturelle, Paris; Conservatoire Botanique, Geneva; Botanisches Institut, Zürich; Naturhistorisches Museum, Vienna. Moreover, C. colurna, although always cultivated in the vicinity of either one of the other two species in Europe, produces sterile fruits only unless a heterogenic population of C. colturna grows in the vicinity (Kasapligal 1963 a, b). The existence of C. colurnoides as a hybrid species is most doubftul.

Considering the histologic, palynologic and morphologic evidences presented here, Belulaceae which comprises Alnus, Betula, Carpinus, Corylus, Ostrya and Ostryopsis represents a natural group. The segregation of Corglaceae from Betulaceae is not justified.

St. Gallen, Switzerland, Apr. 11, 1963.

SUMMARY

The present study deals with the histology of the vegetative organs and the tloral morphology of three European species of Corylus in an attempt to understand the degree of phylogenetie relationship among the species under consideration and the taxonomic status of the genus within the family Belulaceae.

The collenchyma in the stems of Gorglus avellana and C. maxima becomes interrupted, the gaps being occupied by thin-walled parenchyma cells. In Corylus colurna, collenchyma of stems remains as a continuous cylinder due to the restitutional capacity of its cells.

The average sizes and the frequencies of the size classes of calcium
oxalate druses in the stem tissues of C. avellana and C. maxima are quite similar, but the druses in different stem tissues of C. colurna are larger than those of the corresponding tissues of C, avellana and C. maxima. Particularly, the frequencies of the size classes of cortical druses in C. colnma deviate considerably from those of the other two species, a fact bearing diagnostic significance for C. colurna.

The bulk of the secondary xylein consists of relatively thin-walled. imperforate tracheary elements in C. avellana and C, maxima and of vessel elements and thick-walled trachpids in C. colurna. Due to the pressence of aggregate rays, the growth layers are more or less wavy. There are 21 xylem rays per millinetre of stem section in C, avellana and C. marima, but in C. colnrna the corresponding number is $\mathbf{1 6}$. The latter species differs considerably from the other two by the presence of brachysclereids in the secondary xylem rays.

The species under consideration show the following types of trichomes : unicellular simple, septate simple, tufted, capitate glandular, club-shaped glandular and conical glandular. The structural relation between these trichomes and those occurring in other betulaceous genera is pointed out. Glandular emergences are confined to Gorylus and constitude a generic character.

Juvenile leaves from the seedlings of C. avellana and C. maxima and those from the sucker-shoots of C. colurna are characterized by the presence of undulate epidermal cells on both abaxial and adaxial sides, while the adult leaves of all three species possess undulate epidermis on the lower side and rectangular or polygonal cells on the upper side. The abaxial epidermis of adult leaves of C. colurna shows a tendency to form stellate cells. The stomata are of anomocytic type and confined to the lower epidermis, the number of subsidiary cells varying from four to six.

Major venation of juvenile and adult leaves is of craspedodromous type and consists of primary, secondary and tertiary veins, all of which are accompanied by bundle sheath extensions. The secondaries form a pinnate venation pattern and terminate in marginal lobes. The tertiaries arise from the basiscopic sides of the secondaries and terminate in marginal teeth. The number of tertiaries diminishes gradually towards the leal apex, Throughout the family, the major venation pattern is uniform. Minor venation of the juvenile leaves consists of veins of fourth, fifth, sixth categories and vein endings, while the minor venation of the adult leaves possesses an additional category of veins forming a more complex reticulum in adult leaves. Ultimate areoles in the adult leaves of C. avellana and C. maxima are polygonal; they may or may not be provided with vein endings. Ultimate areoles of C, colurna are often rounded and provided with sleader and repeatedly branched vein endings.

The collenchyma tissue of petioles is capable of regeneration and gives rise to periderm, following the secondary growth of the main vascular bundle of the petiole. At the level of "coupe caracteristique", the main vascular bundle of the petiole is tripartite and accompanied by an arch-shaped accessory bundle in G. avellana. On the other hand, in
C. maxima and C. colurna the main vascular bundle at the same level of the petiole exhibits a more specialized condition since the tripartite condition is no longer evident and the accessory bundle is closed-eylindrieal.

Gross morphological survey of the staminate flowers did not furnish any evidence in favor of "dividcd nature" of stamens in Corylus. Pollen grains are suboblate, the texture of the exine being psilate to faintly punctuate. Those of C. avellana surveyed in this study are 3-porate, their dimension being $25,2 \times 19,9$ microns. Pollen grains of C. maxima are mostly 3 -porate, rarely 2 - or 4 -porate, their dimension being $24,7 \times 19,5$ microns. C. colurna has mostly 3- or 4 -porate grains, less frequently 2-, 5- and 6-porate grains, mean dimensions being $25,9 \times 20,2$ microns. Variation in the pore numbers of the pollen grains does not appear to be a racial characteristic. Great variation in the pore number of the pollen grains is attributed to chromosomal aberrations and non-disjunctions which take place quite often during meiosis of microsporogenesis. Palynological evidence favours the homogencity of Belalaceae.

The observations regarding vegetative and reproductive structures of three species of Corylus indicate close aflinity between C. avellana and C. maxima. It is assumed that C. colurna is more closely allied with C. ferox than it is either with C. avellana or G. maxima. Hence, the possibility of hybridization between C. colurna and the other two species is very unlikely. The validity of the hybrid species Corylus \times colurnoides Schneider is most doubtful.

The woods of Corylus exhibit specialized characteristics such as aggregation of pores, the presence of aggregate rays, a tendency to form homogeneous xylem rays and a metatracheal arrangement of xylem parenchyma, the presence of a great variety of xylem elements, a reduction series in the number of bars of the scalariform perforation plates with a tendency to form simple perforation plates and alternate pitting. However, primitive characters such as diffuse porosity, polyhedral vessel elements, inclined end walls, abundance of bordered pits and scalariform perforation plates are also retained in the genus, Evidence from foliar histology, floral morphology and palynology, however, indicates that the genus occupies 'quite an! advanced position in the phylogenetic scale of dicotyledons. Betulaceae with its six genera, is considered a natural family. The segregation of Corylacear from Betulaceae is not justified.

Literature citeip

ABBe, E. C. (1935), - Studies in the phylogeny of Betulaceae, 1. Floral and intlorescence aratomy and morphology. Bot. Gaz, 97 : 1-67.

- (1938). - Studies in the phylogeny of the Behalaceae. II, Extremes in the range of voriation of tloral and inflorescence morphology. Bot. Gaz. 99: 431469.

Bailey, 1. Wh. (1949), - Origins of the angiosperms : need for a broadened outlook. Jour. Amold Apboretum 30 : 64-70.

Bailey, L. H. (1927). - The slandard cyclopedia of horticulture. London.
Bexsonz $_{2}$ M. (1894). - Contributions to the embryology ol the Amenliferae. Part 1. Transact. Linn. Soc. Lond., and Ser. 111, 10.
Bexthan, G. \& J. D. Hooker (1862-1883). - Genera plantarum ad exemplaria imprimis in herbalis kewensibus servata defnita. Vol. 3, Reeve \& Ca., London.
Bessey, C. E. \{1915). - The phylogenctic taxonomy ol tlowering plants. Ann. Missouri Bot. Gard. 2: 109-164.
Committee on Nomenglature, international asboclation op Wood anatomists (1957). - Glossary of terms used in deseribing woods. Trop. Woods 107: 1-36.

Constance, L. (1955). - The systematics of the angiosperms. A century of progress in the natural sciences, pp. 405-483. Calil. Acad. ol Sciences, San Francisco.
Dragg, W. S. (1962). - Pollen marphology of the Lentouceate. Amer. Jour. Bat. 49, 10: 1027-1032.
Eames, A. J. \& C. H. MacDaniels (1947). \rightarrow An introduction to plant anatomy. 2nd ed., NcGraw-Hill Book Co., New York.
Eames, A. J. (1961). - Morphology ol angiosperms. Me Graw-Hill Book Co., New York.
Eichler, A. W. (1875-1878). - Bläthendiagramme (construirt und erlautert). 2 vols., Wilhelm Engelmann, Leipzig.
Engler, A. \& K. Prantl (1894). - Die natürlichen Pilanzenlamilien. II1. 1, Wilhelm Engelmann, Leipzig.
Esptmax, G. (1952). - Pollen morphology and plant taxonomy. Chronica Botanica, Waitham, Mass.

- (1954). - An introdaction to pollen avalysis. Clironica Botanica, Wallham, Mass.
Esau, K. (1953). - Plant anatomy. John Wiley \& Sons, 1nc., New York.
Ettinghausen, C. R. v. (1861)* - Blatt-Skelette der Dikotyledonen mit besonderer Rucksieht aut die Untersuchung und Bestimmung der Fossilen Pilanzeareste. Wien.
Evreinoff, V. A. (1958). - Contribution a l'étude des noisetiers. Jour. Agr. Trop. 5: 274.
Faecri, K, \& P, Devie (1960). - Size variation in pollen grains with diferent treatments, Pollen et spores 2: 293-298.
Firgas, F. \& 1. (1958). - Ober die Anzahl der Keimporen der Pollenkorner yon Carpinas belalus L. Veroff. d. Geobol. Inst. Rubel. Zärich, Helt 34: 45-52.
Foster, A. S. (1949). - Practical plant anatomy. D. Van Nostrand Co., New York.
- (1951), - Heterophylly and follar venation in Lacunaria. Bull. Torrey Bot. Club, 78: 382-400.
- (1956). - Plant Idioblakts; remarkable examples of cell specialization. Protoplasma, 46: 184-193.
Geitler, L. (1943). - Fruchitormen der Hasel in Wildpopulationen, Ost. Bot. Zeit. 92: 87-93.
Goeschke, F. (1887). - Die Haselnuss, ihre Arten und Ibre Kultur. Berlin.
Greguss, P. (1959). - Holzanatomie der Europarischen Laubhölzer und Sträucher. Budapest.
Gross, F. (1902). - Die Haselnuss, ihre Kultur und wirtschaflliche Bedeutung. Paul Parey, Berlin.
Fagerup, 0 . (1942). - The morphology and blology of the Corgtias-fruit. Biol, Medd. udg, af Danske Vldensk. Selsk. 17: 6, Köbenhavn.
Hall, J. W. (1952). - The comparative anatomy and phylogeny oll the Eetalacear. Bot. Gaz. 113 (3): 235-270.
Hartwig, 1. (1892). - Illustrierteg Geholzbuch. Paut Parey, Berlin.
11egr, G. (1957), - Illustrierte Flora von Mittel-Europa. 111. 1, Belulacaae p. 136, revised by K. H. Rechinger, Carl Hanser Verlag, München.
Hsermovist, H. (1948), - Studies on the tloral morphology and phylogeny of the Amentilerae. Botaniska Notiser, Suppt. 2. 1. Lund.
Holmboe, J. (1914). - Studies on the vegetation ol Cyprus. (Based upon researches
during the spring and summer 1905). Bergens Mus. Skritter. Ny Raekke 1, 2: $1 \mathrm{~V}+344 \mathrm{pp}$.
Howes, F. N. (1948). - Nuts, thel production and everyday uses. Faber \& Faber Ltd., London.
Hutcuinson, J. (1959), - The families of flowering plents. Vol. 1. Gicolyledons. Oxiord.
International Code of Botavigal Nomenglature (1961), - Adopted by the Ninth International Botenteal Congress, Montreal, Aug. 1950], Utrecht.
Jones, S. G. (193a). - Introduction to Roral mechanism. Blackie \& Son Ltd., London.
Kasapligil, B, \{1951 a), - Bithi dokularinin saydamasticilmasinda kullanilau metodlar (Methods used in clearing plant tissues), Biologi 1, 5: 240-244.
- (1951 b), - Morphological and ontogenetic studies of Umbellularia califormica Nutt. and Laturte nobilis L. Univ, Calif, Publ. Bot. 28, 3: 115-240.
- (1963a). - Le notsetier de Turquie. Musés de Genève 4, 32; 8-10, (1903 b). - Corgitus colurna L. and its varieltes, Jour, Calif. Hort. Soc, Oct, 24, 4 : 95-104 \{1963\},
Kirehner, O. V.; E. Loew \& C. Scuroter (1913). - Lebensgeschiehte der Blútemplianzen Mitteleuropas 2, 1: Coryius, pp. 146-166.
Krause, K. (1930). - Beitrage zur Flora Klemasiens V. Die in der Türkei vorkommenden Bäue und Straucher, Repert, spee. nov, reg. veg. 3, 11-16; 113-139,
Kaissuany, G. \{1959), - Handbuch der Laubgelsolze 1, $5: 351-359$ for Corglas, Paul Parey, Berlin \& Hamburg.
Mallanjudd, H. (1962). - La culture du Noisetier devrait maitre et se propager en Frunce. Rev. Hort. No. 2246: 236,
Metcalfe, C. A. \& L. Cilalk (1957), - Anatomy of the dicotyiedons. Clarendon Press, Oxford.
Netolitzky, F. (1932). - Die Pllanzenhaare, In Linsbayen's Handb. d. Planzenanatomie, vol, 4, Lief. 29.
Nicholson, G. (1884). - The illustrated dictionary of gardening. London.
Osbonn, A. (1930). - The trec coryluses, Garden. Chron. No, 2250; 106-107,
Penzro, O. (1894). - Planzen-Teratologic. Vol. 11. Angelo Ciminago, Genua.
Petit, L. (1887), - Pétiole des dicotyledones au point de vue de l'anatomie comparée et de la taxonomic. Ann. Sci. Nat. Bot, ser. 7, c: 342-354.
Philitson, W. R. (1948). - The hezel nut. 1llustr. London News, Sept. 25, 1948: 356.

Pla Dalmau, J, M. (1961), - Pollen. Talleres Grálicos D. G. P., Gerona (Spain),
Pray, T. R. (1954), \rightarrow Foliar venation of angiosperms 1. Mature venation of Liriodendron. Amer. Jour, Bot. 41: $663-670$.

- (1955 a). - Foliar venation of angiosperms [1. Histogenesis of the venation of Liriodeadron. Amer. Jour. Bot. 42; 18-27.
- (1955 b), - Foliar venation of Angiosperms I11. Pattern and hlstology of the venation of Hosta, Amer. Jour. Bot. 42: 611-618.
Reed, C. A. (1926), - Nut-tree propagation. U. S. D. A. Farm. Bull. 1501.
Refder, A. (1946). - Notes on some cullivaled trees and shrubs, Ill. Jour. Amold Arboretum 27: 169-174.
- (1949). - Bibliography of cultivated trees and slirubs. Arnold Arboretum, Itarvard Univ. Jamaica Plaln, Mass.
Reicheneach, H. G. L. (1849-1850), - Deutbchlands Flora, 11-12, Amentaceac. Friedrich Holmeister, Leipzig.
Rilstone, F, (1938). - The flowering of Corylas atellana Linn. Jour. Bot. 76. 292295.

Schimetder, C. K. (1906). - Iltustriertes Handbuch der Latablolzkunde. Corglus: 1: 144-150. Gustav Fiseher, Jena.
Scuoch-Водмеr, Ii. (1936). - Zur Methodik der Grösseabestimmung von PollenkJ̈rnern, mit besonderer Beruicksichtigung von Corytus avellana. Ber. d. Schweiz. Bot. Ges, 45: 62-70.
Schulz, A. (1892), 一 Beiträge zur Morphologie und Biologie der Bluten. Ber, d. deutsch. Bot. Ges. 10: 306-308,

Solereder, H. (1908) - Systemalic analomy of lte dicolyledons. Transl. By I.. A. Boober and $\mathrm{F}+\mathrm{E}_{+}$Fritscht Oaford.
Turalle, W. B. (1956). - Corghes maxima var. purpurea, Cupuliferae. Cumis's Bot. Alag. 271, tab. 268 and text.
Wein, K. (1932) . - Altwelliche Geholze der europaischen Garlen im Wandel der Jahrhunderte. Mitt. d. deutsch. dendrolog. Ges. 44: 130-152.
Werss, F. E. [1932], - Some unusual female caltins of Corghus. froc. L.inn. Sod: 144: 107-109.
Wittspein, R. (1995). - Handbuch der syslematischen Botanik. ed. 4, Befulaceae. 11: 619. Franz Deuljcke. Lejpzig \& Wien.
Winklef, H. (1904). - Betalaceae in A. Engler's Pllanzenreieln IV, 61, Coryites: 44-56. Wilhelm Engelmann, Leipzig.
Wodehouse, R. P. (1959). - Pollen grans. Hafner Publ. Co., Now York.
Zimmermann, W. (1922). - Eigenartige Blntenverlabltnisse bei Ainus und Beobachlungen an Beluia, Corylus und Carpinus. Mitt. d. deutsch. dendrol. Ges, 32 112-134.

[^0]: 1. D. a. b. h. $=$ diameter at breast's height.
